Mercurial > repos > mingchen0919 > deseq2_rmarkdown
view DESeq_results.Rmd @ 7:a5fdd120b2c7 draft
Uploaded
author | mingchen0919 |
---|---|
date | Mon, 07 Aug 2017 18:11:50 -0400 |
parents | cf6012738737 |
children |
line wrap: on
line source
--- title: 'DESeq2: Results' output: html_document: number_sections: true toc: true theme: cosmo highlight: tango --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( echo = ECHO ) library(DESeq2) library(pheatmap) library(genefilter) ``` # Import workspace ```{r eval=TRUE} fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData") load("deseq.RData") ``` # Results {.tabset} ## Result table ```{r} group = colnames(sample_table)[CONTRAST_GROUP] res <- results(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL')) datatable(as.data.frame(res), style="bootstrap", filter = 'top', class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) ``` ## Result summary ```{r} summary(res) ``` # MA-plot {.tabset} ## Shrinked with `lfcShrink()` function ```{r eval=FALSE} shrink_res = DESeq2::lfcShrink(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'), res=res) plotMA(shrink_res) ``` ## Shrinked with Bayesian procedure ```{r} plotMA(res) ``` # Histogram of p values ```{r} hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main = "", xlab = "Mean normalized count larger than 1") ``` # Gene clustering ```{r} group_index = as.numeric(strsplit("CLUSTERING_GROUPS", ',')[[1]]) clustering_groups = colnames(sample_table)[group_index] topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20) mat <- assay(rld)[ topVarGenes, ] mat <- mat - rowMeans(mat) annotation_col <- as.data.frame(colData(rld)[, clustering_groups]) colnames(annotation_col) = clustering_groups rownames(annotation_col) = colnames(mat) pheatmap(mat, annotation_col = annotation_col) ```