Mercurial > repos > mingchen0919 > deseq2_rmarkdown
view DESeq_visualization.Rmd @ 13:b50f1063a621 draft
Uploaded
author | mingchen0919 |
---|---|
date | Mon, 07 Aug 2017 20:52:38 -0400 |
parents | 507e408cd6cc |
children |
line wrap: on
line source
--- title: 'DESeq2: Visualization' output: html_document: number_sections: true toc: true theme: cosmo highlight: tango --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( echo = ECHO ) library(stringi) library(DESeq2) library(pheatmap) library(PoiClaClu) library(RColorBrewer) ``` # Import workspace ```{r eval=TRUE} fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData") load("deseq.RData") ``` # Visualization ## Heatmaps of sample-to-sample distances {.tabset} ### rlog-transformed values ```{r} sampleDistMatrix <- as.matrix( sampleDists ) colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) pheatmap(sampleDistMatrix, # clustering_distance_rows = sampleDists, clustering_distance_cols = sampleDists, col = colors) ``` ### Poisson Distance ```{r} count_t = t(counts(dds)) rownames(count_t) = colnames(counts(dds)) poisd <- PoissonDistance(count_t) samplePoisDistMatrix <- as.matrix( poisd$dd ) rownames(samplePoisDistMatrix) = rownames(count_t) colnames(samplePoisDistMatrix) = rownames(count_t) pheatmap(samplePoisDistMatrix, # clustering_distance_rows = poisd$dd, clustering_distance_cols = poisd$dd, col = colors) ``` ## PCA plots {.tabset} ### Using `plotPCA()` function ```{r} # interest groups col_index = as.numeric(strsplit("INTGROUPS_PCA", ',')[[1]]) intgroup_pca = colnames(sample_table)[col_index] ``` ```{r} plotPCA(rld, intgroup = intgroup_pca) ``` ### Using *ggplot2* ```{r} pcaData <- plotPCA(rld, intgroup = intgroup_pca, returnData = TRUE) percentVar <- round(100 * attr(pcaData, "percentVar")) ggplot(pcaData, aes(x = PC1, y = PC2, color = time)) + geom_point(size =3) + xlab(paste0("PC1: ", percentVar[1], "% variance")) + ylab(paste0("PC2: ", percentVar[2], "% variance")) + coord_fixed() ``` ### PCA data table ```{r} knitr::kable(pcaData) ``` ## MDS plots {.tabset} ### Using rlog-transformed values ```{r} mds <- as.data.frame(colData(rld)) %>% cbind(cmdscale(sampleDistMatrix)) mds ggplot(mds, aes(x = `1`, y = `2`, col = time)) + geom_point(size = 3) + coord_fixed() ``` ### Using the *Poisson Distance* ```{r} mdsPois <- as.data.frame(colData(dds)) %>% cbind(cmdscale(samplePoisDistMatrix)) ggplot(mdsPois, aes(x = `1`, y = `2`, col = time)) + geom_point(size = 3) + coord_fixed() ```