comparison DESeq_results.Rmd @ 0:7231d7e8d3ed draft

planemo upload for repository https://github.com/statonlab/docker-GRReport/tree/master/my_tools/rmarkdown_deseq2 commit 9285c2b8ad41a486dde2a87600a6b8267841c8b5-dirty
author mingchen0919
date Tue, 08 Aug 2017 10:43:18 -0400
parents
children 2f8ddef8d545
comparison
equal deleted inserted replaced
-1:000000000000 0:7231d7e8d3ed
1 ---
2 title: 'DESeq2: Results'
3 output:
4 html_document:
5 number_sections: true
6 toc: true
7 theme: cosmo
8 highlight: tango
9 ---
10
11 ```{r setup, include=FALSE, warning=FALSE, message=FALSE}
12 knitr::opts_chunk$set(
13 echo = ECHO
14 )
15
16 library(DESeq2)
17 library(pheatmap)
18 library(genefilter)
19 ```
20
21 # Import workspace
22
23 ```{r eval=TRUE}
24 fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData")
25 load("deseq.RData")
26 ```
27
28 # Results {.tabset}
29
30 ## Result table
31
32 ```{r}
33 group = colnames(sample_table)[CONTRAST_GROUP]
34 res <- results(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'))
35 datatable(as.data.frame(res), style="bootstrap", filter = 'top',
36 class="table-condensed", options = list(dom = 'tp', scrollX = TRUE))
37 ```
38
39 ## Result summary
40
41 ```{r}
42 summary(res)
43 ```
44
45
46 # MA-plot {.tabset}
47
48 ## Shrinked with `lfcShrink()` function
49
50 ```{r eval=FALSE}
51 shrink_res = DESeq2::lfcShrink(dds, contrast = c(group, 'TREATMENT_LEVEL', 'CONDITION_LEVEL'), res=res)
52 plotMA(shrink_res)
53 ```
54
55 ## Shrinked with Bayesian procedure
56
57 ```{r}
58 plotMA(res)
59 ```
60
61
62 # Histogram of p values
63
64 ```{r}
65 hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20,
66 col = "grey50", border = "white", main = "",
67 xlab = "Mean normalized count larger than 1")
68 ```
69
70
71 # Gene clustering
72
73 ```{r}
74 group_index = as.numeric(strsplit("CLUSTERING_GROUPS", ',')[[1]])
75 clustering_groups = colnames(sample_table)[group_index]
76
77 topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20)
78 mat <- assay(rld)[ topVarGenes, ]
79 mat <- mat - rowMeans(mat)
80 annotation_col <- as.data.frame(colData(rld)[, clustering_groups])
81 colnames(annotation_col) = clustering_groups
82 rownames(annotation_col) = colnames(mat)
83 pheatmap(mat, annotation_col = annotation_col)
84 ```
85