Mercurial > repos > mingchen0919 > rmarkdown_deseq2
view DESeq_results.Rmd @ 9:924d122d0027 draft default tip
change data format
author | mingchen0919 |
---|---|
date | Thu, 16 Nov 2017 10:16:29 -0500 |
parents | 2f8ddef8d545 |
children |
line wrap: on
line source
--- title: 'DESeq2: Results' output: html_document: number_sections: true toc: true theme: cosmo highlight: tango --- ```{r setup, include=FALSE, warning=FALSE, message=FALSE} knitr::opts_chunk$set( echo = ECHO, error = TRUE ) ``` ```{r eval=TRUE} # Import workspace fcp = file.copy("DESEQ_WORKSPACE", "deseq.RData") load("deseq.RData") ``` # Results {.tabset} ## Result table ```{r} cat('--- View the top 100 rows of the result table ---') res <- results(dds, contrast = c('CONTRAST_FACTOR', 'TREATMENT_LEVEL', 'CONDITION_LEVEL')) write.csv(as.data.frame(res), file = 'deseq_results.csv') res_df = as.data.frame(res)[1:100, ] datatable(res_df, style="bootstrap", filter = 'top', class="table-condensed", options = list(dom = 'tp', scrollX = TRUE)) ``` ## Result summary ```{r} summary(res) ``` # MA-plot {.tabset} ```{r} cat('--- Shrinked with Bayesian procedure ---') plotMA(res) ``` # Histogram of p values ```{r} hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main = "", xlab = "Mean normalized count larger than 1") ``` # Visualization {.tabset} ## Gene clustering ```{r} clustering_groups = strsplit("CLUSTERING_FACTORS", ',')[[1]] topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 20) mat <- assay(rld)[ topVarGenes, ] mat <- mat - rowMeans(mat) annotation_col <- as.data.frame(colData(rld)[, clustering_groups]) colnames(annotation_col) = clustering_groups rownames(annotation_col) = colnames(mat) pheatmap(mat, annotation_col = annotation_col) ``` ## Sample-to-sample distance ```{r} sampleDistMatrix <- as.matrix( sampleDists ) colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) pheatmap(sampleDistMatrix, clustering_distance_cols = sampleDists, col = colors) ``` ## PCA plot ```{r} plotPCA(rld, intgroup = clustering_groups) ``` ## MDS plot {.tabset} ### Data table ```{r} mds <- as.data.frame(colData(rld)) %>% cbind(cmdscale(sampleDistMatrix)) knitr::kable(mds) ``` ### Plot ```{r} ggplot(mds, aes(x = `1`, y = `2`, col = time)) + geom_point(size = 3) + coord_fixed() ```