Mercurial > repos > mingchen0919 > rmarkdown_fastqc_report
diff fastqc_report.Rmd @ 2:0374e090e38e draft
Uploaded
author | mingchen0919 |
---|---|
date | Mon, 07 Aug 2017 21:40:56 -0400 |
parents | |
children | e629c2288316 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fastqc_report.Rmd Mon Aug 07 21:40:56 2017 -0400 @@ -0,0 +1,384 @@ +--- +title: "Fastqc report: short reads quality evaluation" +author: "Ming Chen" +output: html_document +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo=ECHO, warning=FALSE, message=FALSE) +library(plyr) +library(stringr) +library(dplyr) +library(highcharter) +library(DT) +library(reshape2) +# library(Kmisc) +library(plotly) +library(formattable) +library(htmltools) +``` + + +```{bash 'create output directory', echo=FALSE} +# create extra files directory. very important! +mkdir REPORT_OUTPUT_DIR +``` + +# Fastqc analysis +```{bash 'copy data to working directory', echo=FALSE} +# Copy uploaded data to the working directory +for f in $(echo READS | sed "s/,/ /g") +do + cp $f ./ +done +``` + + +```{bash 'run fastqc', echo=FALSE} +for r in $(ls *.dat) +do + fastqc -o REPORT_OUTPUT_DIR $r > /dev/null 2>&1 +done +``` + +## Fastqc html reports + +Below are links to ***Fastqc*** original html reports. +```{r 'html report links'} +html_report_list = list() +html_files = list.files('REPORT_OUTPUT_DIR', pattern = '.*html') +for (i in html_files) { + html_report_list[[i]] = tags$li(tags$a(href=i, i)) +} +tags$ul(html_report_list) +``` + + +## Parsing fastqc data + +```{bash echo=FALSE} +##==== copy fastqc generated zip files from report output directory to job work directory == +cp -r REPORT_OUTPUT_DIR/*zip ./ + +# create a file to store data file paths +echo "sample_id,file_path" > PWF_file_paths.txt # Pass, Warning, Fail +echo "sample_id,file_path" > PBQS_file_paths.txt # Per Base Quality Score +echo "sample_id,file_path" > PSQS_file_paths.txt # Per Sequence Quality Score +echo "sample_id,file_path" > PSGC_file_paths.txt # Per Sequence GC Content +echo "sample_id,file_path" > PBSC_file_paths.txt # Per Base Sequence Content +echo "sample_id,file_path" > PBNC_file_paths.txt # Per Base N Content +echo "sample_id,file_path" > SDL_file_paths.txt # Sequence Duplication Level +echo "sample_id,file_path" > SLD_file_paths.txt # Sequence Length Distribution +echo "sample_id,file_path" > KMC_file_paths.txt # Kmer Content + +for i in $(ls *.zip) +do + BASE=$(echo $i | sed 's/\(.*\)\.zip/\1/g') + echo $BASE + unzip ${BASE}.zip > /dev/null 2>&1 + + ##====== pass,warning,fail (WSF) ============= + awk '/^>>/ {print}' "$BASE"/fastqc_data.txt | grep -v 'END_MODULE' | sed 's/>>//' > "$BASE"-PWF.txt + echo "${BASE},${BASE}-PWF.txt" >> PWF_file_paths.txt + + ##====== per base quality scores (PBQS) ====== + awk '/^>>Per base sequence quality/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBQS.txt + echo "${BASE},${BASE}-PBQS.txt" >> PBQS_file_paths.txt + + ##====== per sequence quality scores (PSQS) + awk '/^>>Per sequence quality scores/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSQS.txt + echo "${BASE},${BASE}-PSQS.txt" >> PSQS_file_paths.txt + + ##====== Per sequence GC content (PSGC) + awk '/^>>Per sequence GC content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSGC.txt + echo "${BASE},${BASE}-PSGC.txt" >> PSGC_file_paths.txt + + ##====== Per Base Sequence Content (PBSC) + awk '/^>>Per base sequence content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBSC.txt + echo "${BASE},${BASE}-PBSC.txt" >> PBSC_file_paths.txt + + ##====== Per Base N Content (PBNC) + awk '/^>>Per base N content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBNC.txt + echo "${BASE},${BASE}-PBNC.txt" >> PBNC_file_paths.txt + + ##====== Sequence Duplication Level (SDL) + awk '/^>>Sequence Duplication Levels/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SDL.txt + echo "${BASE},${BASE}-SDL.txt" >> SDL_file_paths.txt + + ##====== Sequence Length Distribution (SLD) + awk '/^>>Sequence Length Distribution/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SLD.txt + echo "${BASE},${BASE}-SLD.txt" >> SLD_file_paths.txt + + ##====== Kmer Content ============ + awk '/^>>Kmer Content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-KMC.txt + echo "${BASE},${BASE}-KMC.txt" >> KMC_file_paths.txt + +done +``` + + +## Evaluation Overview + +```{r 'overview'} +PWF_file_paths = read.csv('PWF_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +rm('PWF_df') +for(i in 1:nrow(PWF_file_paths)) { + file_path = PWF_file_paths[i,2] + pwf_df = read.csv(file_path, + sep='\t', header=FALSE, stringsAsFactors = FALSE) + colnames(pwf_df) = c('item', PWF_file_paths[i,1]) + if (!exists('PWF_df')) { + PWF_df = pwf_df + } else { + PWF_df = cbind(PWF_df, pwf_df[,2,drop=FALSE]) + } +} +``` + +```{r} +my_icon = c('ok', 'remove', 'star') +names(my_icon) = c('pass', 'fail', 'warn') +evaluate_list = list() +for (i in colnames(PWF_df)[-1]) { + evaluate_list[[i]] = formatter( + "span", + style = x ~ style("background-color" = ifelse(x =='pass', '#9CD027', ifelse(x == 'fail', '#CC0000', '#FF4E00')), + "color" = "white", + "width" = "50px", + "float" = "left", + "padding-right" = "5px") + ) +} + +formattable(PWF_df, evaluate_list) +``` + + +## Per Base Quality Scores + +```{r} +PBQS_df = data.frame() +PBQS_file_paths = read.csv('PBQS_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +for(i in 1:nrow(PBQS_file_paths)) { + # file_path = paste0('REPORT_OUTPUT_DIR/', PBQS_file_paths[i,2]) + file_path = PBQS_file_paths[i,2] + pbqs_df = read.csv(file_path, + sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% + mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), + Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% + (function (df) { + df1 = select(df, -Base2) + df2 = select(df, -Base1) %>% filter(Base2 != '') + colnames(df1) = c(colnames(df1)[1:7], 'Base') + colnames(df2) = c(colnames(df2)[1:7], 'Base') + res = rbind(df1, df2) %>% arrange(Base) + return(res) + }) + pbqs_df$sample_id = rep(PBQS_file_paths[i,1], nrow(pbqs_df)) + PBQS_df = rbind(PBQS_df, pbqs_df) +} +``` + + +```{r} +# datatable(PBQS_df) +max_phred = max(PBQS_df$Mean) + 10 +hchart(PBQS_df, "line", hcaes(x = Base, y = Mean, group = sample_id)) %>% + hc_title( + text = "Per Base Quality Score" + ) %>% + hc_yAxis( + title = list(text = "Mean Base Quality Score"), + min = 0, + max = max_phred, + plotLines = list( + list(label = list(text = "Phred Score = 27"), + width = 2, + dashStyle = "dash", + color = "green", + value = 27), + list(label = list(text = "Phred Score = 20"), + width = 2, + color = "red", + value = 20) + ) + ) %>% + hc_exporting(enabled = TRUE) +``` + + +## Per Base N Content + +```{r} +PBNC_df = data.frame() +PBNC_file_paths = read.csv('PBNC_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +for(i in 1:nrow(PBNC_file_paths)) { + # file_path = paste0('REPORT_OUTPUT_DIR/', PBNC_file_paths[i,2]) + file_path = PBNC_file_paths[i,2] + pbnc_df = read.csv(file_path, + sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% + mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), + Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% + (function (df) { + df1 = select(df, -Base2) + df2 = select(df, -Base1) %>% filter(Base2 != '') + colnames(df1) = c(colnames(df1)[1:2], 'Base') + colnames(df2) = c(colnames(df2)[1:2], 'Base') + res = rbind(df1, df2) %>% arrange(Base) + return(res) + }) + pbnc_df$sample_id = rep(PBNC_file_paths[i,1], nrow(pbnc_df)) + PBNC_df = rbind(PBNC_df, pbnc_df) +} +``` + + +```{r} +PBNC_df$N.Count = PBNC_df$N.Count * 100 +max_phred = max(PBNC_df$N.Count) + 5 +hchart(PBNC_df, "line", hcaes(x = as.character(Base), y = N.Count, group = sample_id)) %>% + hc_title( + text = "Per Base N Content" + ) %>% + hc_xAxis( + title = list(text = "Base Position") + ) %>% + hc_yAxis( + title = list(text = "N %"), + plotLines = list( + list(label = list(text = "N = 5%"), + width = 2, + dashStyle = "dash", + color = "red", + value = 5) + ) + ) %>% + hc_exporting(enabled = TRUE) +``` + + + + +## Per Sequence Quality Scores + +```{r} +PSQS_df = data.frame() +PSQS_file_paths = read.csv('PSQS_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +for(i in 1:nrow(PSQS_file_paths)) { + # file_path = paste0('REPORT_OUTPUT_DIR/', PSQS_file_paths[i,2]) + file_path = PSQS_file_paths[i,2] + psqs_df = read.csv(file_path, + sep='\t', header=TRUE, stringsAsFactors = FALSE) + psqs_df$sample_id = rep(PSQS_file_paths[i,1], nrow(psqs_df)) + PSQS_df = rbind(PSQS_df, psqs_df) +} +``` + + +```{r} +max_phred = max(PSQS_df$X.Quality) + 5 +hchart(PSQS_df, "line", hcaes(x = X.Quality, y = Count, group = sample_id)) %>% + hc_title( + text = "Per Sequence Quality Score" + ) %>% + hc_xAxis( + title = list(text = "Mean Sequence Quality Score"), + min = 0, + max = max_phred, + plotLines = list( + list(label = list(text = "Phred Score = 27"), + width = 2, + dashStyle = "dash", + color = "green", + value = 27), + list(label = list(text = "Phred Score = 20"), + width = 2, + color = "red", + value = 20) + ) + ) %>% + hc_exporting(enabled = TRUE) +``` + + +## Per Sequence GC Content + + +```{r} +PSGC_df = data.frame() +PSGC_file_paths = read.csv('PSGC_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +for(i in 1:nrow(PSGC_file_paths)) { + # file_path = paste0('REPORT_OUTPUT_DIR/', PSGC_file_paths[i,2]) + file_path = PSGC_file_paths[i,2] + psgc_df = read.csv(file_path, + sep='\t', header=TRUE, stringsAsFactors = FALSE) + psgc_df$sample_id = rep(PSGC_file_paths[i,1], nrow(psgc_df)) + PSGC_df = rbind(PSGC_df, psgc_df) +} +``` + + +```{r} +max_phred = max(PSGC_df$Count) + 5 +hchart(PSGC_df, "line", hcaes(x = X.GC.Content, y = Count, group = sample_id)) %>% + hc_title( + text = "Per Sequence GC Content" + ) %>% + hc_xAxis( + title = list(text = "% GC") + ) %>% + hc_exporting(enabled = TRUE) +``` + + +## Per Base Sequence Content + +```{r} +PBSC_df = data.frame() +PBSC_file_paths = read.csv('PBSC_file_paths.txt', + header = TRUE, stringsAsFactors = FALSE) +for(i in 1:nrow(PBSC_file_paths)) { + # file_path = paste0('REPORT_OUTPUT_DIR/', PBSC_file_paths[i,2]) + file_path = PBSC_file_paths[i,2] + pbsc_df = read.csv(file_path, + sep='\t', header=TRUE, stringsAsFactors = FALSE) %>% + mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]), + Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>% + (function (df) { + df1 = select(df, -Base2) + df2 = select(df, -Base1) %>% filter(Base2 != '') + colnames(df1) = c(colnames(df1)[1:5], 'Base') + colnames(df2) = c(colnames(df2)[1:5], 'Base') + res = rbind(df1, df2) %>% arrange(Base) + return(res) + }) + pbsc_df$sample_id = rep(PBSC_file_paths[i,1], nrow(pbsc_df)) + PBSC_df = rbind(PBSC_df, pbsc_df) +} +``` + + +```{r out.width="100%"} +PBSC_df_2 = select(PBSC_df, -X.Base) %>% + melt(id = c('Base', 'sample_id'), value.name = 'base_percentage') +p = ggplot(data = PBSC_df_2, aes(x = Base, y = base_percentage, group = variable, color = variable)) + + geom_line() + + facet_wrap(~ sample_id) +ggplotly(p) +``` + + +## References + +* Andrews, Simon. "FastQC: a quality control tool for high throughput sequence data." (2010): 175-176. +* Goecks, Jeremy, Anton Nekrutenko, and James Taylor. "Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences." Genome biology 11.8 (2010): R86. +* Afgan, Enis, et al. "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update." Nucleic acids research (2016): gkw343. +* Highcharts. https://www.highcharts.com/. (access by May 26, 2017). +* R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. +* Joshua Kunst (2017). highcharter: A Wrapper for the 'Highcharts' Library. R package version 0.5.0. https://CRAN.R-project.org/package=highcharter +* Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly