# HG changeset patch
# User mingchen0919
# Date 1502210173 14400
# Node ID d820be692d74f664d2c67c0b926d2416320a12ef
# Parent 2f4df2be05724ecd22c32a02d3e430eec10dfe46
planemo upload for repository https://github.com/statonlab/docker-GRReport/tree/master/my_tools/rmarkdown_fastqc_site commit d91f269e8bc09a488ed2e005122bbb4a521f44a0-dirty
diff -r 2f4df2be0572 -r d820be692d74 01_evaluation_overview.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/01_evaluation_overview.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,123 @@
+---
+title: "Evaluation Overview"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+```{bash 'copy data from datasets directory to working directory', echo=FALSE}
+# Copy uploaded data to the working directory
+for f in $(echo READS | sed "s/,/ /g")
+do
+ cp $f ./
+done
+```
+
+```{bash 'run fastqc', echo=FALSE}
+# run fastqc and place outputs into the report directory
+for r in $(ls *.dat)
+do
+ fastqc -o REPORT_OUTPUT_DIR $r > /dev/null 2>&1
+done
+```
+
+```{bash 'parse fastqc results', echo=FALSE}
+##==== copy fastqc generated zip files from report output directory to job work directory ==
+cp -r REPORT_OUTPUT_DIR/*zip ./
+
+# create a file to store data file paths
+echo "sample_id,file_path" > PWF_file_paths.txt # Pass, Warning, Fail
+echo "sample_id,file_path" > PBQS_file_paths.txt # Per Base Quality Score
+echo "sample_id,file_path" > PSQS_file_paths.txt # Per Sequence Quality Score
+echo "sample_id,file_path" > PSGC_file_paths.txt # Per Sequence GC Content
+echo "sample_id,file_path" > PBSC_file_paths.txt # Per Base Sequence Content
+echo "sample_id,file_path" > PBNC_file_paths.txt # Per Base N Content
+echo "sample_id,file_path" > SDL_file_paths.txt # Sequence Duplication Level
+echo "sample_id,file_path" > SLD_file_paths.txt # Sequence Length Distribution
+echo "sample_id,file_path" > KMC_file_paths.txt # Kmer Content
+
+for i in $(ls *.zip)
+do
+ BASE=$(echo $i | sed 's/\(.*\)\.zip/\1/g')
+ echo $BASE
+ unzip ${BASE}.zip > /dev/null 2>&1
+
+ ##====== pass,warning,fail (WSF) =============
+ awk '/^>>/ {print}' "$BASE"/fastqc_data.txt | grep -v 'END_MODULE' | sed 's/>>//' > "$BASE"-PWF.txt
+ echo "${BASE},${BASE}-PWF.txt" >> PWF_file_paths.txt
+
+ ##====== per base quality scores (PBQS) ======
+ awk '/^>>Per base sequence quality/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBQS.txt
+ echo "${BASE},${BASE}-PBQS.txt" >> PBQS_file_paths.txt
+
+ ##====== per sequence quality scores (PSQS)
+ awk '/^>>Per sequence quality scores/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSQS.txt
+ echo "${BASE},${BASE}-PSQS.txt" >> PSQS_file_paths.txt
+
+ ##====== Per sequence GC content (PSGC)
+ awk '/^>>Per sequence GC content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PSGC.txt
+ echo "${BASE},${BASE}-PSGC.txt" >> PSGC_file_paths.txt
+
+ ##====== Per Base Sequence Content (PBSC)
+ awk '/^>>Per base sequence content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBSC.txt
+ echo "${BASE},${BASE}-PBSC.txt" >> PBSC_file_paths.txt
+
+ ##====== Per Base N Content (PBNC)
+ awk '/^>>Per base N content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-PBNC.txt
+ echo "${BASE},${BASE}-PBNC.txt" >> PBNC_file_paths.txt
+
+ ##====== Sequence Duplication Level (SDL)
+ awk '/^>>Sequence Duplication Levels/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SDL.txt
+ echo "${BASE},${BASE}-SDL.txt" >> SDL_file_paths.txt
+
+ ##====== Sequence Length Distribution (SLD)
+ awk '/^>>Sequence Length Distribution/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-SLD.txt
+ echo "${BASE},${BASE}-SLD.txt" >> SLD_file_paths.txt
+
+ ##====== Kmer Content ============
+ awk '/^>>Kmer Content/ {flag=1; next} /END_MODULE/ {flag=0} flag' "$BASE"/fastqc_data.txt >"$BASE"-KMC.txt
+ echo "${BASE},${BASE}-KMC.txt" >> KMC_file_paths.txt
+
+done
+```
+
+
+## Evaluation Overview
+
+```{r 'overview'}
+PWF_file_paths = read.csv('PWF_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+rm('PWF_df')
+for(i in 1:nrow(PWF_file_paths)) {
+ file_path = PWF_file_paths[i,2]
+ pwf_df = read.csv(file_path,
+ sep='\t', header=FALSE, stringsAsFactors = FALSE)
+ colnames(pwf_df) = c('item', PWF_file_paths[i,1])
+ if (!exists('PWF_df')) {
+ PWF_df = pwf_df
+ } else {
+ PWF_df = cbind(PWF_df, pwf_df[,2,drop=FALSE])
+ }
+}
+```
+
+
+```{r}
+my_icon = c('ok', 'remove', 'star')
+names(my_icon) = c('pass', 'fail', 'warn')
+evaluate_list = list()
+for (i in colnames(PWF_df)[-1]) {
+ evaluate_list[[i]] = formatter(
+ "span",
+ style = x ~ style("background-color" = ifelse(x =='pass', '#9CD027', ifelse(x == 'fail', '#CC0000', '#FF4E00')),
+ "color" = "white",
+ "width" = "50px",
+ "float" = "left",
+ "padding-right" = "5px")
+ )
+}
+
+formattable(PWF_df, evaluate_list)
+```
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 02_fastqc_original_reports.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/02_fastqc_original_reports.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,20 @@
+---
+title: "FastQC original reports"
+output: html_document
+---
+
+```{r 'FastQC original reports', include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+
+Below are links to ***Fastqc*** original html reports.
+
+```{r 'html report links'}
+html_report_list = list()
+html_files = list.files('REPORT_OUTPUT_DIR', pattern = '.*html')
+for (i in html_files) {
+ html_report_list[[i]] = tags$li(tags$a(href=i, i))
+}
+tags$ul(html_report_list)
+```
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 1_per_base_quality_scores.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/1_per_base_quality_scores.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,62 @@
+---
+title: "Per Base Quality Scores"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+
+## Per Base Quality Scores
+
+```{r}
+PBQS_df = data.frame()
+PBQS_file_paths = read.csv('PBQS_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+for(i in 1:nrow(PBQS_file_paths)) {
+ # file_path = paste0('REPORT_OUTPUT_DIR/', PBQS_file_paths[i,2])
+ file_path = PBQS_file_paths[i,2]
+ pbqs_df = read.csv(file_path,
+ sep='\t', header=TRUE, stringsAsFactors = FALSE) %>%
+ mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]),
+ Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>%
+ (function (df) {
+ df1 = select(df, -Base2)
+ df2 = select(df, -Base1) %>% filter(Base2 != '')
+ colnames(df1) = c(colnames(df1)[1:7], 'Base')
+ colnames(df2) = c(colnames(df2)[1:7], 'Base')
+ res = rbind(df1, df2) %>% arrange(Base)
+ return(res)
+ })
+ pbqs_df$sample_id = rep(PBQS_file_paths[i,1], nrow(pbqs_df))
+ PBQS_df = rbind(PBQS_df, pbqs_df)
+}
+```
+
+
+```{r}
+# datatable(PBQS_df)
+max_phred = max(PBQS_df$Mean) + 10
+hchart(PBQS_df, "line", hcaes(x = Base, y = Mean, group = sample_id)) %>%
+ hc_title(
+ text = "Per Base Quality Score"
+ ) %>%
+ hc_yAxis(
+ title = list(text = "Mean Base Quality Score"),
+ min = 0,
+ max = max_phred,
+ plotLines = list(
+ list(label = list(text = "Phred Score = 27"),
+ width = 2,
+ dashStyle = "dash",
+ color = "green",
+ value = 27),
+ list(label = list(text = "Phred Score = 20"),
+ width = 2,
+ color = "red",
+ value = 20)
+ )
+ ) %>%
+ hc_exporting(enabled = TRUE)
+```
diff -r 2f4df2be0572 -r d820be692d74 2_per_base_N_content.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/2_per_base_N_content.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,58 @@
+---
+title: "Per Base N Content"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+## Per Base N Content
+
+```{r}
+PBNC_df = data.frame()
+PBNC_file_paths = read.csv('PBNC_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+for(i in 1:nrow(PBNC_file_paths)) {
+ # file_path = paste0('REPORT_OUTPUT_DIR/', PBNC_file_paths[i,2])
+ file_path = PBNC_file_paths[i,2]
+ pbnc_df = read.csv(file_path,
+ sep='\t', header=TRUE, stringsAsFactors = FALSE) %>%
+ mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]),
+ Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>%
+ (function (df) {
+ df1 = select(df, -Base2)
+ df2 = select(df, -Base1) %>% filter(Base2 != '')
+ colnames(df1) = c(colnames(df1)[1:2], 'Base')
+ colnames(df2) = c(colnames(df2)[1:2], 'Base')
+ res = rbind(df1, df2) %>% arrange(Base)
+ return(res)
+ })
+ pbnc_df$sample_id = rep(PBNC_file_paths[i,1], nrow(pbnc_df))
+ PBNC_df = rbind(PBNC_df, pbnc_df)
+}
+```
+
+
+```{r}
+PBNC_df$N.Count = PBNC_df$N.Count * 100
+max_phred = max(PBNC_df$N.Count) + 5
+hchart(PBNC_df, "line", hcaes(x = as.character(Base), y = N.Count, group = sample_id)) %>%
+ hc_title(
+ text = "Per Base N Content"
+ ) %>%
+ hc_xAxis(
+ title = list(text = "Base Position")
+ ) %>%
+ hc_yAxis(
+ title = list(text = "N %"),
+ plotLines = list(
+ list(label = list(text = "N = 5%"),
+ width = 2,
+ dashStyle = "dash",
+ color = "red",
+ value = 5)
+ )
+ ) %>%
+ hc_exporting(enabled = TRUE)
+```
diff -r 2f4df2be0572 -r d820be692d74 3_per_sequence_quality_scores.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/3_per_sequence_quality_scores.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,50 @@
+---
+title: "Per Sequence Quality Scores"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+## Per Sequence Quality Scores
+
+```{r}
+PSQS_df = data.frame()
+PSQS_file_paths = read.csv('PSQS_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+for(i in 1:nrow(PSQS_file_paths)) {
+ # file_path = paste0('REPORT_OUTPUT_DIR/', PSQS_file_paths[i,2])
+ file_path = PSQS_file_paths[i,2]
+ psqs_df = read.csv(file_path,
+ sep='\t', header=TRUE, stringsAsFactors = FALSE)
+ psqs_df$sample_id = rep(PSQS_file_paths[i,1], nrow(psqs_df))
+ PSQS_df = rbind(PSQS_df, psqs_df)
+}
+```
+
+
+```{r}
+max_phred = max(PSQS_df$X.Quality) + 5
+hchart(PSQS_df, "line", hcaes(x = X.Quality, y = Count, group = sample_id)) %>%
+ hc_title(
+ text = "Per Sequence Quality Score"
+ ) %>%
+ hc_xAxis(
+ title = list(text = "Mean Sequence Quality Score"),
+ min = 0,
+ max = max_phred,
+ plotLines = list(
+ list(label = list(text = "Phred Score = 27"),
+ width = 2,
+ dashStyle = "dash",
+ color = "green",
+ value = 27),
+ list(label = list(text = "Phred Score = 20"),
+ width = 2,
+ color = "red",
+ value = 20)
+ )
+ ) %>%
+ hc_exporting(enabled = TRUE)
+```
diff -r 2f4df2be0572 -r d820be692d74 4_per_sequence_GC_content.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/4_per_sequence_GC_content.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,38 @@
+---
+title: "Per Sequence GC Content"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+## Per Sequence GC Content
+
+
+```{r}
+PSGC_df = data.frame()
+PSGC_file_paths = read.csv('PSGC_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+for(i in 1:nrow(PSGC_file_paths)) {
+ # file_path = paste0('REPORT_OUTPUT_DIR/', PSGC_file_paths[i,2])
+ file_path = PSGC_file_paths[i,2]
+ psgc_df = read.csv(file_path,
+ sep='\t', header=TRUE, stringsAsFactors = FALSE)
+ psgc_df$sample_id = rep(PSGC_file_paths[i,1], nrow(psgc_df))
+ PSGC_df = rbind(PSGC_df, psgc_df)
+}
+```
+
+
+```{r}
+max_phred = max(PSGC_df$Count) + 5
+hchart(PSGC_df, "line", hcaes(x = X.GC.Content, y = Count, group = sample_id)) %>%
+ hc_title(
+ text = "Per Sequence GC Content"
+ ) %>%
+ hc_xAxis(
+ title = list(text = "% GC")
+ ) %>%
+ hc_exporting(enabled = TRUE)
+```
diff -r 2f4df2be0572 -r d820be692d74 5_per_base_sequence_content.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/5_per_base_sequence_content.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,45 @@
+---
+title: "Per Base Sequence Content"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = ECHO)
+```
+
+## Per Base Sequence Content
+
+```{r}
+PBSC_df = data.frame()
+PBSC_file_paths = read.csv('PBSC_file_paths.txt',
+ header = TRUE, stringsAsFactors = FALSE)
+for(i in 1:nrow(PBSC_file_paths)) {
+ # file_path = paste0('REPORT_OUTPUT_DIR/', PBSC_file_paths[i,2])
+ file_path = PBSC_file_paths[i,2]
+ pbsc_df = read.csv(file_path,
+ sep='\t', header=TRUE, stringsAsFactors = FALSE) %>%
+ mutate(Base1=as.numeric(str_split_fixed(X.Base, '-', 2)[,1]),
+ Base2=as.numeric(str_split_fixed(X.Base, '-', 2)[,2])) %>%
+ (function (df) {
+ df1 = select(df, -Base2)
+ df2 = select(df, -Base1) %>% filter(Base2 != '')
+ colnames(df1) = c(colnames(df1)[1:5], 'Base')
+ colnames(df2) = c(colnames(df2)[1:5], 'Base')
+ res = rbind(df1, df2) %>% arrange(Base)
+ return(res)
+ })
+ pbsc_df$sample_id = rep(PBSC_file_paths[i,1], nrow(pbsc_df))
+ PBSC_df = rbind(PBSC_df, pbsc_df)
+}
+```
+
+
+```{r out.width="100%"}
+PBSC_df_2 = select(PBSC_df, -X.Base) %>%
+ melt(id = c('Base', 'sample_id'), value.name = 'base_percentage')
+p = ggplot(data = PBSC_df_2, aes(x = Base, y = base_percentage, group = variable, color = variable)) +
+ geom_line() +
+ facet_wrap(~ sample_id)
+ggplotly(p)
+```
+
diff -r 2f4df2be0572 -r d820be692d74 _site.yml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/_site.yml Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,29 @@
+name: "FastQC Website"
+output_dir: "my_site"
+navbar:
+ title: "FastQC"
+ type: inverse
+ left:
+ - text: "Home"
+ icon: fa-home
+ href: index.html
+ - text: "Evaluation Overview"
+ href: 01_evaluation_overview.html
+ - text: "Evaluation Items"
+ menu:
+ - text: "Per Base Quality Scores"
+ href: 1_per_base_quality_scores.html
+ - text: "Per Base N Content"
+ href: 2_per_base_N_content.html
+ - text: "Per Sequence Quality Scores"
+ href: 3_per_sequence_quality_scores.html
+ - text: "Per Sequence GC Content"
+ href: 4_per_sequence_GC_content.html
+ - text: "Per Base Sequence Content"
+ href: 5_per_base_sequence_content.html
+ - text: "Original FastQC Reports"
+ href: 02_fastqc_original_reports.html
+output:
+ html_document:
+ theme: cosmo
+ highlight: textmate
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 fastqc_site.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fastqc_site.xml Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,124 @@
+
+
+ bioconductor-deseq2
+ r-getopt
+ r-rmarkdown
+ r-plyr
+ r-stringr
+ r-highcharter
+ r-dt
+ r-reshape2
+ r-plotly
+ r-formattable
+ r-htmltools
+ fastqc
+
+
+ Implements FastQC analysis and display results in R Markdown website.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ @misc{bioinformatics2014fastqc,
+ title={FastQC},
+ author={Bioinformatics, Babraham},
+ year={2014}
+ }
+
+
+ @article{allaire2016rmarkdown,
+ title={rmarkdown: Dynamic Documents for R, 2016},
+ author={Allaire, J and Cheng, Joe and Xie, Yihui and McPherson, Jonathan and Chang, Winston and Allen, Jeff and Wickham, Hadley and Atkins, Aron and Hyndman, Rob},
+ journal={R package version 0.9},
+ volume={6},
+ year={2016}
+ }
+
+
+ @book{xie2015dynamic,
+ title={Dynamic Documents with R and knitr},
+ author={Xie, Yihui},
+ volume={29},
+ year={2015},
+ publisher={CRC Press}
+ }
+
+
+ @misc{plotly2017,
+ title = {plotly: Create Interactive Web Graphics via 'plotly.js'},
+ author = {Carson Sievert and Chris Parmer and Toby Hocking and Scott Chamberlain and Karthik Ram and Marianne Corvellec and Pedro Despouy},
+ year = {2017},
+ note = {R package version 4.6.0},
+ url = {https://CRAN.R-project.org/package=plotly},
+ }
+
+
+ @misc{highcharter2017,
+ title = {highcharter: A Wrapper for the 'Highcharts' Library},
+ author = {Joshua Kunst},
+ year = {2017},
+ note = {R package version 0.5.0},
+ url = {https://CRAN.R-project.org/package=highcharter},
+ }
+
+
+ @misc{formattable2016,
+ title = {formattable: Create 'Formattable' Data Structures},
+ author = {Kun Ren and Kenton Russell},
+ year = {2016},
+ note = {R package version 0.2.0.1},
+ url = {https://CRAN.R-project.org/package=formattable},
+ }
+
+
+
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 fastqc_site_render.R
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/fastqc_site_render.R Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,195 @@
+##======= Handle arguments from command line ========
+# setup R error handline to go to stderr
+options(show.error.messages=FALSE,
+ error=function(){
+ cat(geterrmessage(), file=stderr())
+ quit("no", 1, F)
+ })
+
+# we need that to not crash galaxy with an UTF8 error on German LC settings.
+loc = Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
+
+# suppress warning
+options(warn = -1)
+
+options(stringsAsFactors=FALSE, useFancyQuotes=FALSE)
+args = commandArgs(trailingOnly=TRUE)
+
+suppressPackageStartupMessages({
+ library(getopt)
+ library(tools)
+})
+
+# column 1: the long flag name
+# column 2: the short flag alias. A SINGLE character string
+# column 3: argument mask
+# 0: no argument
+# 1: argument required
+# 2: argument is optional
+# column 4: date type to which the flag's argument shall be cast.
+# possible values: logical, integer, double, complex, character.
+spec_list=list()
+
+##------- 1. input data ---------------------
+spec_list$READS = c('reads', 'r', '1', 'character')
+spec_list$ECHO = c('echo', 'e', '1', 'character')
+
+##--------2. output report and report site directory --------------
+spec_list$FASTQC_SITE = c('fastqc_site', 'o', '1', 'character')
+spec_list$FASTQC_SITE_DIR = c('fastqc_site_dir', 'd', '1', 'character')
+
+##--------3. Rmd templates sitting in the tool directory ----------
+
+ ## _site.yml and index.Rmd files
+ spec_list$SITE_YML = c('site_yml', 's', 1, 'character')
+ spec_list$INDEX_Rmd = c('index_rmd', 'i', 1, 'character')
+
+ ## other Rmd body template files
+ spec_list$x01 = c('x01_evaluation_overview', 'p', '1', 'character')
+ spec_list$x02 = c('x02_fastqc_original_reports', 'a', '1', 'character')
+ spec_list$x1 = c('x1_per_base_quality_scores', 'b', '1', 'character')
+ spec_list$x2 = c('x2_per_base_N_content', 'c', '1', 'character')
+ spec_list$x3 = c('x3_per_sequence_quality_scores', 'f', '1', 'character')
+ spec_list$x4 = c('x4_per_sequence_GC_content', 'g', '1', 'character')
+ spec_list$x5 = c('x5_per_base_sequence_content', 'h', '1', 'character')
+
+##------------------------------------------------------------------
+
+spec = t(as.data.frame(spec_list))
+opt = getopt(spec)
+# arguments are accessed by long flag name (the first column in the spec matrix)
+# NOT by element name in the spec_list
+# example: opt$help, opt$expression_file
+##====== End of arguments handling ==========
+
+#------ Load libraries ---------
+library(rmarkdown)
+library(plyr)
+library(stringr)
+library(dplyr)
+library(highcharter)
+library(DT)
+library(reshape2)
+library(plotly)
+library(formattable)
+library(htmltools)
+
+
+#----- 1. create the report directory ------------------------
+paste0('mkdir -p ', opt$fastqc_site_dir) %>%
+ system()
+
+#----- 2. generate Rmd files with Rmd templates --------------
+# a. templates without placeholder variables:
+# copy templates from tool directory to the working directory.
+# b. templates with placeholder variables:
+# substitute variables with user input values and place them in the working directory.
+
+
+ #----- Copy index.Rmd and _site.yml files to job working direcotry -----
+ file.copy(opt$index_rmd, 'index.Rmd', recursive=TRUE)
+ file.copy(opt$site_yml, '_site.yml', recursive=TRUE)
+ #---------------------------------------------------------
+
+ #----- 01_evaluation_overview.Rmd -----------------------
+ readLines(opt$x01_evaluation_overview) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ gsub('READS', opt$reads, x)
+ }) %>%
+ (function(x) {
+ gsub('REPORT_OUTPUT_DIR', opt$fastqc_site_dir, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('01_evaluation_overview.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+ #----- 1_per_base_quality_scores.Rmd --------------------
+ readLines(opt$x1_per_base_quality_scores) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('1_per_base_quality_scores.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+ #----- 2_per_base_N_content.Rmd -------------------------
+ readLines(opt$x2_per_base_N_content) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('2_per_base_N_content.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+ #----- 3_per_sequence_quality_scores.Rmd ----------------
+ readLines(opt$x3_per_sequence_quality_scores) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('3_per_sequence_quality_scores.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+
+ #----- 4_per_sequence_GC_content.Rmd --------------------
+ readLines(opt$x4_per_sequence_GC_content) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('4_per_sequence_GC_content.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+
+ #----- 5_per_base_sequence_content.Rmd ------------------
+ readLines(opt$x5_per_base_sequence_content) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('5_per_base_sequence_content.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+ #----- 02_fastqc_original_reports.Rmd -------------------
+ readLines(opt$x02_fastqc_original_reports) %>%
+ (function(x) {
+ gsub('ECHO', opt$echo, x)
+ }) %>%
+ (function(x) {
+ gsub('REPORT_OUTPUT_DIR', opt$fastqc_site_dir, x)
+ }) %>%
+ (function(x) {
+ fileConn = file('02_fastqc_original_reports.Rmd')
+ writeLines(x, con=fileConn)
+ close(fileConn)
+ })
+
+
+
+#------ 3. render all Rmd files with render_site() --------
+render_site()
+
+
+#-------4. manipulate outputs -----------------------------
+# a. copy index.html to the report output path
+# b. copy all files in 'my_site' to the report output directory
+file.copy('my_site/index.html', opt$fastqc_site, recursive=TRUE)
+paste0('cp -r my_site/* ', opt$fastqc_site_dir) %>%
+ system()
+
+
diff -r 2f4df2be0572 -r d820be692d74 index.Rmd
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/index.Rmd Tue Aug 08 12:36:13 2017 -0400
@@ -0,0 +1,20 @@
+---
+title: "FastQC Report"
+output: html_document
+---
+
+```{r setup, include=FALSE, warning=FALSE, message=FALSE}
+knitr::opts_chunk$set(echo = TRUE)
+```
+
+
+
+## References
+
+* Andrews, Simon. "FastQC: a quality control tool for high throughput sequence data." (2010): 175-176.
+* Goecks, Jeremy, Anton Nekrutenko, and James Taylor. "Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences." Genome biology 11.8 (2010): R86.
+* Afgan, Enis, et al. "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update." Nucleic acids research (2016): gkw343.
+* Highcharts. https://www.highcharts.com/. (access by May 26, 2017).
+* R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
+* Joshua Kunst (2017). highcharter: A Wrapper for the 'Highcharts' Library. R package version 0.5.0. https://CRAN.R-project.org/package=highcharter
+* Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly
diff -r 2f4df2be0572 -r d820be692d74 wgcna_construct_network.Rmd
--- a/wgcna_construct_network.Rmd Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,178 +0,0 @@
----
-title: 'WGCNA: construct network'
-output:
- html_document:
- number_sections: true
- toc: true
- theme: cosmo
- highlight: tango
----
-
-```{r setup, include=FALSE, warning=FALSE, message=FALSE}
-knitr::opts_chunk$set(
- echo = ECHO
-)
-```
-
-# Import workspace
-
-This step imports workspace from the **WGCNA: preprocessing** step.
-
-```{r}
-fcp = file.copy("PREPROCESSING_WORKSPACE", "deseq.RData")
-load("deseq.RData")
-```
-
-
-# Processing outliers {.tabset}
-
-## Before removing outliers
-
-```{r}
-plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,
- cex.axis = 1, cex.main = 1, cex = 0.5)
-if(!is.na(HEIGHT_CUT)) {
- # plot a line to show the cut
- abline(h = HEIGHT_CUT, col = "red")
- # determine cluster under the line
- clust = cutreeStatic(sampleTree, cutHeight = HEIGHT_CUT, minSize = 10)
- keepSamples = (clust==1)
- expression_data = expression_data[keepSamples, ]
-}
-```
-
-## After removing outliers
-
-```{r}
-sampleTree = hclust(dist(expression_data), method = "average");
-plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="",
- cex.axis = 1, cex.main = 1, cex = 0.5)
-```
-
-
-# Trait data {.tabeset}
-
-If trait data is provided, the first 100 rows from the data will be displayed here. A plot consisting of sample cluster dendrogram and trait heatmap will also be gerenated.
-
-## Trait data table
-
-```{r}
-trait_data = data.frame()
-if ("TRAIT_DATA" != 'None') {
- trait_data = read.csv("TRAIT_DATA", header = TRUE, row.names = 1)
- # form a data frame analogous to expression data that will hold the traits.
- sample_names = rownames(expression_data)
- trait_rows = match(sample_names, rownames(trait_data))
- trait_data = trait_data[trait_rows, ]
- datatable(head(trait_data, 100), style="bootstrap", filter = 'top',
- class="table-condensed", options = list(dom = 'tp', scrollX = TRUE))
-}
-```
-
-## Dendrogram and heatmap
-
-```{r fig.align='center', fig.width=8, fig.height=9}
-if (nrow(trait_data) != 0) {
- traitColors = numbers2colors(trait_data, signed = FALSE)
- plotDendroAndColors(sampleTree, traitColors,
- groupLabels = names(trait_data),
- main = "Sample dendrogram and trait heatmap",
- cex.dendroLabels = 0.5)
-}
-```
-
-
-# The thresholding power
-
-```{r}
-powers = c(1:10, seq(12, 20, 2))
-soft_threshold = pickSoftThreshold(expression_data, powerVector = powers, verbose = 5)
-```
-
-```{r fig.align='center'}
-par(mfrow=c(1,2))
-plot(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2],
- xlab="Soft Threshold (power)",
- ylab="Scale Free Topology Model Fit,signed R^2",type="n",
- main = paste("Scale independence"),
- cex.lab = 0.5);
-text(soft_threshold$fitIndices[,1], -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2],
- labels=powers,cex=0.5,col="red");
-
-# calculate soft threshold power
-y = -sign(soft_threshold$fitIndices[,3])*soft_threshold$fitIndices[,2]
-r2_cutoff = 0.9
-for(i in 1:length(powers)) {
- if(y[i] > r2_cutoff) {
- soft_threshold_power = soft_threshold$fitIndices[,1][i]
- r2_cutoff_new = y[i]
- break
- }
- soft_threshold_power = soft_threshold$fitIndices[,1][length(powers)]
-}
-abline(h=r2_cutoff, col="red")
-abline(v=soft_threshold_power, col="blue")
-text(soft_threshold_power+1, r2_cutoff-0.1,
- paste0('R^2 cutoff = ', round(r2_cutoff_new,2)),
- cex = 0.5, col = "red")
-
-plot(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5],
- xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
- main = paste("Mean connectivity"),
- cex.lab = 0.5)
-text(soft_threshold$fitIndices[,1], soft_threshold$fitIndices[,5], labels=powers, cex=0.5,col="red")
-par(mfrow=c(1,1))
-```
-
-
-# Construct network
-
-The gene network is constructed based on **soft threshold power = `r soft_threshold_power`**
-
-```{r}
-gene_network = blockwiseModules(expression_data, power = soft_threshold_power,
- TOMType = "unsigned", minModuleSize = 30,
- reassignThreshold = 0, mergeCutHeight = 0.25,
- numericLabels = TRUE, pamRespectsDendro = FALSE,
- verbose = 3)
-```
-
-
-# Gene modules {.tabset}
-
-## Idenfity gene modules
-
-```{r}
-modules = table(gene_network$colors)
-n_modules = length(modules) - 1
-module_size_upper = modules[2]
-module_size_lower = modules[length(modules)]
-
-module_table = data.frame(model_label = c(0, 1:n_modules),
- gene_size = as.vector(modules))
-datatable(t(module_table))
-```
-
-The results above indicates that there are **`r n_modules` gene modules**, labeled 1 through `r length(n_modules)` in order of descending size. The largest module has **`r module_size_upper` genes**, and the smallest module has **`r module_size_lower` genes**. The label 0 is reserved for genes outside of all modules.
-
-
-## Dendrogram and module plot
-
-```{r}
-# Convert labels to colors for plotting
-module_colors = labels2colors(gene_network$colors)
-# Plot the dendrogram and the module colors underneath
-plotDendroAndColors(gene_network$dendrograms[[1]], module_colors[gene_network$blockGenes[[1]]],
- "Module colors",
- dendroLabels = FALSE, hang = 0.03,
- addGuide = TRUE, guideHang = 0.05)
-```
-
-
-```{r echo=FALSE}
-# save workspace
-rm("opt")
-save(list=ls(all.names = TRUE), file='CONSTRUCT_NETWORK_WORKSPACE')
-```
-
-
diff -r 2f4df2be0572 -r d820be692d74 wgcna_construct_network.xml
--- a/wgcna_construct_network.xml Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-
-
- r-getopt
- r-rmarkdown
- r-plyr
- r-highcharter
- r-dt
- r-htmltools
- r-wgcna
-
-
- Construct gene network.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- @article{langfelder2008wgcna,
- title={WGCNA: an R package for weighted correlation network analysis},
- author={Langfelder, Peter and Horvath, Steve},
- journal={BMC bioinformatics},
- volume={9},
- number={1},
- pages={559},
- year={2008},
- publisher={BioMed Central}
- }
-
-
- @article{allaire2016rmarkdown,
- title={rmarkdown: Dynamic Documents for R, 2016},
- author={Allaire, J and Cheng, Joe and Xie, Yihui and McPherson, Jonathan and Chang, Winston and Allen, Jeff and Wickham, Hadley and Atkins, Aron and Hyndman, Rob},
- journal={R package version 0.9},
- volume={6},
- year={2016}
- }
-
-
- @book{xie2015dynamic,
- title={Dynamic Documents with R and knitr},
- author={Xie, Yihui},
- volume={29},
- year={2015},
- publisher={CRC Press}
- }
-
-
-
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 wgcna_construct_network_render.R
--- a/wgcna_construct_network_render.R Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,112 +0,0 @@
-##======= Handle arguments from command line ========
-# setup R error handline to go to stderr
-options(show.error.messages=FALSE,
- error=function(){
- cat(geterrmessage(), file=stderr())
- quit("no", 1, F)
- })
-
-# we need that to not crash galaxy with an UTF8 error on German LC settings.
-loc = Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
-
-# suppress warning
-options(warn = -1)
-
-options(stringsAsFactors=FALSE, useFancyQuotes=FALSE)
-args = commandArgs(trailingOnly=TRUE)
-
-suppressPackageStartupMessages({
- library(getopt)
- library(tools)
-})
-
-# column 1: the long flag name
-# column 2: the short flag alias. A SINGLE character string
-# column 3: argument mask
-# 0: no argument
-# 1: argument required
-# 2: argument is optional
-# column 4: date type to which the flag's argument shall be cast.
-# possible values: logical, integer, double, complex, character.
-spec_list=list()
-
-##------- 1. input data ---------------------
-spec_list$ECHO = c('echo', 'e', '1', 'character')
-spec_list$PREPROCESSING_WORKSPACE = c('preprocessing_workspace', 'w', '1', 'character')
-spec_list$HEIGHT_CUT = c('height_cut', 'h', '2', 'double')
-spec_list$TRAIT_DATA = c('trait_data', 't', '2', 'character')
-
-
-##--------2. output report and report site directory --------------
-spec_list$OUTPUT_HTML = c('wgcna_construct_network_html', 'o', '1', 'character')
-spec_list$OUTPUT_DIR = c('wgcna_construct_network_dir', 'd', '1', 'character')
-spec_list$CONSTRUCT_NETWORK_WORKSPACE = c('construct_network_workspace', 'W', '1', 'character')
-
-
-##--------3. Rmd templates in the tool directory ----------
-
-spec_list$WGCNA_PREPROCESSING_RMD = c('wgcna_construct_network_rmd', 'M', '1', 'character')
-
-
-
-##------------------------------------------------------------------
-
-spec = t(as.data.frame(spec_list))
-opt = getopt(spec)
-# arguments are accessed by long flag name (the first column in the spec matrix)
-# NOT by element name in the spec_list
-# example: opt$help, opt$expression_file
-##====== End of arguments handling ==========
-
-#------ Load libraries ---------
-library(rmarkdown)
-library(WGCNA)
-library(DT)
-library(htmltools)
-library(ggplot2)
-
-
-#----- 1. create the report directory ------------------------
-system(paste0('mkdir -p ', opt$wgcna_construct_network_dir))
-
-
-#----- 2. generate Rmd files with Rmd templates --------------
-# a. templates without placeholder variables:
-# copy templates from tool directory to the working directory.
-# b. templates with placeholder variables:
-# substitute variables with user input values and place them in the working directory.
-
-
-#----- 01 wgcna_construct_network.Rmd -----------------------
-readLines(opt$wgcna_construct_network_rmd) %>%
- (function(x) {
- gsub('ECHO', opt$echo, x)
- }) %>%
- (function(x) {
- gsub('PREPROCESSING_WORKSPACE', opt$preprocessing_workspace, x)
- }) %>%
- (function(x) {
- gsub('HEIGHT_CUT', opt$height_cut, x)
- }) %>%
- (function(x) {
- gsub('TRAIT_DATA', opt$trait_data, x)
- }) %>%
- (function(x) {
- gsub('OUTPUT_DIR', opt$wgcna_construct_network_dir, x)
- }) %>%
- (function(x) {
- gsub('CONSTRUCT_NETWORK_WORKSPACE', opt$construct_network_workspace, x)
- }) %>%
- (function(x) {
- fileConn = file('wgcna_construct_network.Rmd')
- writeLines(x, con=fileConn)
- close(fileConn)
- })
-
-
-#------ 3. render all Rmd files --------
-render('wgcna_construct_network.Rmd', output_file = opt$wgcna_construct_network_html)
-
-#-------4. manipulate outputs -----------------------------
-
-
diff -r 2f4df2be0572 -r d820be692d74 wgcna_eigengene_visualization.Rmd
--- a/wgcna_eigengene_visualization.Rmd Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,121 +0,0 @@
----
-title: 'WGCNA: eigengene visualization'
-output:
- html_document:
- number_sections: true
- toc: true
- theme: cosmo
- highlight: tango
----
-
-```{r setup, include=FALSE, warning=FALSE, message=FALSE}
-knitr::opts_chunk$set(
- echo = ECHO
-)
-```
-
-# Import workspace
-
-This step imports workspace from the **WGCNA: construct network** step.
-
-```{r}
-fcp = file.copy("CONSTRUCT_NETWORK_WORKSPACE", "deseq.RData")
-load("deseq.RData")
-```
-
-
-# Gene modules {.tabset}
-
-```{r}
-if(!is.na(SOFT_THRESHOLD_POWER)) soft_threshold_power = SOFT_THRESHOLD_POWER
-```
-
-## Identify gene modules
-
-The gene network is constructed based on **soft threshold power = `r soft_threshold_power`**
-
-```{r}
-gene_network = blockwiseModules(expression_data, power = soft_threshold_power,
- TOMType = "unsigned", minModuleSize = 30,
- reassignThreshold = 0, mergeCutHeight = 0.25,
- numericLabels = TRUE, pamRespectsDendro = FALSE,
- verbose = 3)
-```
-
-
-```{r}
-modules = table(gene_network$colors)
-n_modules = length(modules) - 1
-module_size_upper = modules[2]
-module_size_lower = modules[length(modules)]
-
-module_table = data.frame(model_label = c(0, 1:n_modules),
- gene_size = as.vector(modules))
-datatable(t(module_table))
-```
-
-The results above indicates that there are **`r n_modules` gene modules**, labeled 1 through `r length(n_modules)` in order of descending size. The largest module has **`r module_size_upper` genes**, and the smallest module has **`r module_size_lower` genes**. The label 0 is reserved for genes outside of all modules.
-
-
-## Dendrogram and module plot
-
-```{r}
-# Convert labels to colors for plotting
-module_colors = labels2colors(gene_network$colors)
-# Plot the dendrogram and the module colors underneath
-plotDendroAndColors(gene_network$dendrograms[[1]], module_colors[gene_network$blockGenes[[1]]],
- "Module colors",
- dendroLabels = FALSE, hang = 0.03,
- addGuide = TRUE, guideHang = 0.05)
-```
-
-
-# Gene module correlation
-
-We can calculate eigengenes and use them as representative profiles to quantify similarity of found gene modules.
-
-```{r}
-n_genes = ncol(expression_data)
-n_samples = nrow(expression_data)
-```
-
-```{r}
-diss_tom = 1-TOMsimilarityFromExpr(expression_data, power = soft_threshold_power)
-set.seed(123)
-select_genes = sample(n_genes, size = PLOT_GENES)
-select_diss_tom = diss_tom[select_genes, select_genes]
-
-# calculate gene tree on selected genes
-select_gene_tree = hclust(as.dist(select_diss_tom), method = 'average')
-select_module_colors = module_colors[select_genes]
-
-# transform diss_tom with a power to make moderately strong connections more visiable in the heatmap.
-plot_diss_tom = select_diss_tom^7
-# set diagonal to NA for a nicer plot
-diag(plot_diss_tom) = NA
-```
-
-
-```{r fig.align='center'}
-TOMplot(plot_diss_tom, select_gene_tree, select_module_colors, main = "Network heatmap")
-```
-
-
-# Eigengene visualization {.tabset}
-
-## Eigengene dendrogram
-
-```{r fig.align='center'}
-module_eigengenes = moduleEigengenes(expression_data, module_colors)$eigengenes
-plotEigengeneNetworks(module_eigengenes, "Eigengene dendrogram",
- plotHeatmaps = FALSE)
-```
-
-## Eigengene adjacency heatmap
-
-```{r fig.align='center'}
-plotEigengeneNetworks(module_eigengenes, "Eigengene adjacency heatmap",
- marHeatmap = c(2, 3, 2, 2),
- plotDendrograms = FALSE, xLabelsAngle = 90)
-```
-
diff -r 2f4df2be0572 -r d820be692d74 wgcna_eigengene_visualization.xml
--- a/wgcna_eigengene_visualization.xml Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,100 +0,0 @@
-
-
- r-getopt
- r-rmarkdown
- r-plyr
- r-highcharter
- r-dt
- r-htmltools
- r-wgcna
-
-
- Eigengene visualization.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- @article{langfelder2008wgcna,
- title={WGCNA: an R package for weighted correlation network analysis},
- author={Langfelder, Peter and Horvath, Steve},
- journal={BMC bioinformatics},
- volume={9},
- number={1},
- pages={559},
- year={2008},
- publisher={BioMed Central}
- }
-
-
- @article{allaire2016rmarkdown,
- title={rmarkdown: Dynamic Documents for R, 2016},
- author={Allaire, J and Cheng, Joe and Xie, Yihui and McPherson, Jonathan and Chang, Winston and Allen, Jeff and Wickham, Hadley and Atkins, Aron and Hyndman, Rob},
- journal={R package version 0.9},
- volume={6},
- year={2016}
- }
-
-
- @book{xie2015dynamic,
- title={Dynamic Documents with R and knitr},
- author={Xie, Yihui},
- volume={29},
- year={2015},
- publisher={CRC Press}
- }
-
-
-
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 wgcna_eigengene_visualization_render.R
--- a/wgcna_eigengene_visualization_render.R Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-##======= Handle arguments from command line ========
-# setup R error handline to go to stderr
-options(show.error.messages=FALSE,
- error=function(){
- cat(geterrmessage(), file=stderr())
- quit("no", 1, F)
- })
-
-# we need that to not crash galaxy with an UTF8 error on German LC settings.
-loc = Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
-
-# suppress warning
-options(warn = -1)
-
-options(stringsAsFactors=FALSE, useFancyQuotes=FALSE)
-args = commandArgs(trailingOnly=TRUE)
-
-suppressPackageStartupMessages({
- library(getopt)
- library(tools)
-})
-
-# column 1: the long flag name
-# column 2: the short flag alias. A SINGLE character string
-# column 3: argument mask
-# 0: no argument
-# 1: argument required
-# 2: argument is optional
-# column 4: date type to which the flag's argument shall be cast.
-# possible values: logical, integer, double, complex, character.
-spec_list=list()
-
-##------- 1. input data ---------------------
-spec_list$ECHO = c('echo', 'e', '1', 'character')
-spec_list$CONSTRUCT_NETWORK_WORKSPACE = c('construct_network_workspace', 'w', '1', 'character')
-spec_list$SOFT_THRESHOLD_POWER = c('soft_threshold_power', 'p', '2', 'double')
-spec_list$PLOT_GENES = c('plot_genes', 'n', '1', 'integer')
-
-
-##--------2. output report and report site directory --------------
-spec_list$OUTPUT_HTML = c('wgcna_eigengene_visualization_html', 'o', '1', 'character')
-spec_list$OUTPUT_DIR = c('wgcna_eigengene_visualization_dir', 'd', '1', 'character')
-
-
-
-##--------3. Rmd templates in the tool directory ----------
-
-spec_list$WGCNA_EIGENGENE_VISUALIZATION_RMD = c('wgcna_eigengene_visualization_rmd', 'M', '1', 'character')
-
-
-
-##------------------------------------------------------------------
-
-spec = t(as.data.frame(spec_list))
-opt = getopt(spec)
-# arguments are accessed by long flag name (the first column in the spec matrix)
-# NOT by element name in the spec_list
-# example: opt$help, opt$expression_file
-##====== End of arguments handling ==========
-
-#------ Load libraries ---------
-library(rmarkdown)
-library(WGCNA)
-library(DT)
-library(htmltools)
-library(ggplot2)
-
-
-#----- 1. create the report directory ------------------------
-system(paste0('mkdir -p ', opt$wgcna_eigengene_visualization_dir))
-
-
-#----- 2. generate Rmd files with Rmd templates --------------
-# a. templates without placeholder variables:
-# copy templates from tool directory to the working directory.
-# b. templates with placeholder variables:
-# substitute variables with user input values and place them in the working directory.
-
-
-#----- 01 wgcna_eigengene_visualization.Rmd -----------------------
-readLines(opt$wgcna_eigengene_visualization_rmd) %>%
- (function(x) {
- gsub('ECHO', opt$echo, x)
- }) %>%
- (function(x) {
- gsub('CONSTRUCT_NETWORK_WORKSPACE', opt$construct_network_workspace, x)
- }) %>%
- (function(x) {
- gsub('SOFT_THRESHOLD_POWER', opt$soft_threshold_power, x)
- }) %>%
- (function(x) {
- gsub('PLOT_GENES', opt$plot_genes, x)
- }) %>%
- (function(x) {
- gsub('OUTPUT_DIR', opt$wgcna_eigengene_visualization_dir, x)
- }) %>%
- (function(x) {
- fileConn = file('wgcna_eigengene_visualization.Rmd')
- writeLines(x, con=fileConn)
- close(fileConn)
- })
-
-
-#------ 3. render all Rmd files --------
-render('wgcna_eigengene_visualization.Rmd', output_file = opt$wgcna_eigengene_visualization_html)
-
-#-------4. manipulate outputs -----------------------------
-
-
diff -r 2f4df2be0572 -r d820be692d74 wgcna_preprocessing.Rmd
--- a/wgcna_preprocessing.Rmd Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
----
-title: 'WGCNA: data preprocessing'
-output:
- html_document:
- number_sections: true
- toc: true
- theme: cosmo
- highlight: tango
----
-
-```{r setup, include=FALSE, warning=FALSE, message=FALSE}
-knitr::opts_chunk$set(
- echo = ECHO
-)
-```
-
-```{r}
-str(opt)
-```
-
-# Import data
-
-Each row represents a gene and each column represents a sample.
-
-```{r}
-expression_data = read.csv('EXPRESSION_DATA', header = TRUE, row.names = 1)
-```
-
-Display the first 100 genes.
-
-```{r}
-datatable(head(expression_data, 100), style="bootstrap", filter = 'top',
- class="table-condensed", options = list(dom = 'tp', scrollX = TRUE))
-```
-
-Transpose expression data matrix so that each row represents a sample and each column represents a gene.
-
-```{r}
-expression_data = as.data.frame(t(expression_data))
-```
-
-# Checking data
-
-Checking data for excessive missing values and identification of outlier microarray samples.
-
-```{r}
-gsg = goodSamplesGenes(expression_data, verbose = 3)
-if (!gsg$allOK) {
- # Optionally, print the gene and sample names that were removed:
- if (sum(!gsg$goodGenes)>0)
- printFlush(paste("Removing genes:", paste(names(expression_data)[!gsg$goodGenes], collapse = ", ")));
- if (sum(!gsg$goodSamples)>0)
- printFlush(paste("Removing samples:", paste(rownames(expression_data)[!gsg$goodSamples], collapse = ", ")));
- # Remove the offending genes and samples from the data:
- expression_data = expression_data[gsg$goodSamples, gsg$goodGenes]
-} else {
- print('all genes are OK!')
-}
-```
-
-# Clustering samples
-
-If there are any outliers, choose a height cut that will remove the offending sample. Remember this number since you will need this number in further analysis.
-
-```{r fig.align='center'}
-sampleTree = hclust(dist(expression_data), method = "average");
-plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="",
- cex.axis = 1, cex.main = 1, cex = 0.5)
-```
-
-
-```{r echo=FALSE}
-rm("opt")
-save(list=ls(all.names = TRUE), file='PREPROCESSING_WORKSPACE')
-```
-
diff -r 2f4df2be0572 -r d820be692d74 wgcna_preprocessing.xml
--- a/wgcna_preprocessing.xml Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,96 +0,0 @@
-
-
- r-getopt
- r-rmarkdown
- r-plyr
- r-highcharter
- r-dt
- r-htmltools
- r-wgcna
-
-
- Data clearning and preprocessing.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- @article{langfelder2008wgcna,
- title={WGCNA: an R package for weighted correlation network analysis},
- author={Langfelder, Peter and Horvath, Steve},
- journal={BMC bioinformatics},
- volume={9},
- number={1},
- pages={559},
- year={2008},
- publisher={BioMed Central}
- }
-
-
- @article{allaire2016rmarkdown,
- title={rmarkdown: Dynamic Documents for R, 2016},
- author={Allaire, J and Cheng, Joe and Xie, Yihui and McPherson, Jonathan and Chang, Winston and Allen, Jeff and Wickham, Hadley and Atkins, Aron and Hyndman, Rob},
- journal={R package version 0.9},
- volume={6},
- year={2016}
- }
-
-
- @book{xie2015dynamic,
- title={Dynamic Documents with R and knitr},
- author={Xie, Yihui},
- volume={29},
- year={2015},
- publisher={CRC Press}
- }
-
-
-
\ No newline at end of file
diff -r 2f4df2be0572 -r d820be692d74 wgcna_preprocessing_render.R
--- a/wgcna_preprocessing_render.R Tue Aug 08 12:35:11 2017 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,102 +0,0 @@
-##======= Handle arguments from command line ========
-# setup R error handline to go to stderr
-options(show.error.messages=FALSE,
- error=function(){
- cat(geterrmessage(), file=stderr())
- quit("no", 1, F)
- })
-
-# we need that to not crash galaxy with an UTF8 error on German LC settings.
-loc = Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
-
-# suppress warning
-options(warn = -1)
-
-options(stringsAsFactors=FALSE, useFancyQuotes=FALSE)
-args = commandArgs(trailingOnly=TRUE)
-
-suppressPackageStartupMessages({
- library(getopt)
- library(tools)
-})
-
-# column 1: the long flag name
-# column 2: the short flag alias. A SINGLE character string
-# column 3: argument mask
-# 0: no argument
-# 1: argument required
-# 2: argument is optional
-# column 4: date type to which the flag's argument shall be cast.
-# possible values: logical, integer, double, complex, character.
-spec_list=list()
-
-##------- 1. input data ---------------------
-spec_list$ECHO = c('echo', 'e', '1', 'character')
-spec_list$EXPRESSION_DATA = c('expression_data', 'E', '1', 'character')
-
-
-##--------2. output report and report site directory --------------
-spec_list$OUTPUT_HTML = c('wgcna_preprocessing_html', 'o', '1', 'character')
-spec_list$OUTPUT_DIR = c('wgcna_preprocessing_dir', 'd', '1', 'character')
-spec_list$PREPROCESSING_WORKSPACE = c('preprocessing_workspace', 'w', '1', 'character')
-
-##--------3. Rmd templates sitting in the tool directory ----------
-
-spec_list$WGCNA_PREPROCESSING_RMD = c('wgcna_preprocessing_rmd', 'D', '1', 'character')
-
-
-
-##------------------------------------------------------------------
-
-spec = t(as.data.frame(spec_list))
-opt = getopt(spec)
-# arguments are accessed by long flag name (the first column in the spec matrix)
-# NOT by element name in the spec_list
-# example: opt$help, opt$expression_file
-##====== End of arguments handling ==========
-
-#------ Load libraries ---------
-library(rmarkdown)
-library(WGCNA)
-library(DT)
-library(htmltools)
-
-
-#----- 1. create the report directory ------------------------
-system(paste0('mkdir -p ', opt$wgcna_preprocessing_dir))
-
-
-#----- 2. generate Rmd files with Rmd templates --------------
-# a. templates without placeholder variables:
-# copy templates from tool directory to the working directory.
-# b. templates with placeholder variables:
-# substitute variables with user input values and place them in the working directory.
-
-
-#----- 01 wgcna_preprocessing.Rmd -----------------------
-readLines(opt$wgcna_preprocessing_rmd) %>%
- (function(x) {
- gsub('ECHO', opt$echo, x)
- }) %>%
- (function(x) {
- gsub('EXPRESSION_DATA', opt$expression_data, x)
- }) %>%
- (function(x) {
- gsub('OUTPUT_DIR', opt$wgcna_preprocessing_dir, x)
- }) %>%
- (function(x) {
- gsub('PREPROCESSING_WORKSPACE', opt$preprocessing_workspace, x)
- }) %>%
- (function(x) {
- fileConn = file('wgcna_preprocessing.Rmd')
- writeLines(x, con=fileConn)
- close(fileConn)
- })
-
-
-#------ 3. render all Rmd files --------
-render('wgcna_preprocessing.Rmd', output_file = opt$wgcna_preprocessing_html)
-
-#-------4. manipulate outputs -----------------------------
-
-