Mercurial > repos > mingchen0919 > wgcna
view soft-threshold.R @ 7:e614e0988eda draft default tip
Uploaded
author | mingchen0919 |
---|---|
date | Tue, 28 Feb 2017 10:48:14 -0500 |
parents | 5717a09ed722 |
children |
line wrap: on
line source
#!/usr/binenv Rscript ## Create the personal library if it doesn't exist. Ignore a warning if the directory already exists. dir.create(Sys.getenv("R_LIBS_USER"), showWarnings = FALSE, recursive = TRUE) ## Install one package. install.packages("getopt", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu", dependencies = TRUE ) install.packages("ggplot2", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("ggdendro", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("class", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("cluster", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("impute", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("Hmisc", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) install.packages("WGCNA", Sys.getenv("R_LIBS_USER"), repos = "http://cran.case.edu" , dependencies = TRUE) # A command-line interface to WGCNA for use with galaxy # setup R error handline to go to stderr options(show.error.messages=FALSE, error=function(){ cat(geterrmessage(), file=stderr()) quit("no", 1, F) }) # we need that to not crash galaxy with an UTF8 error on German LC settings. loc = Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") # suppress warning options(warn = -1) suppressPackageStartupMessages({ library(getopt) library(tools) }) options(stringsAsFactors=FALSE, useFancyQuotes=FALSE) args = commandArgs(trailingOnly=TRUE) # column 1: the long flag name # column 2: the short flag alias. A SINGLE character string # column 3: argument mask # 0: no argument # 1: argument required # 2: argument is optional # column 4: date type to which the flag's argument shall be cast. # possible values: logical, integer, double, complex, character. spec_list=list() spec_list$help = c('help', 'h', '0', 'logical') spec_list$threads = c('threads', '-t', '2', 'integer') spec_list$expressionData = c('expressionData', 'f', '1', 'character') spec_list$betaMaximum = c('betaMaximum', 'b', 1, 'integer') spec_list$rPowerTableOutput = c('rPowerTableOutput', 'r', 1, 'character') spec_list$scaleFreeFitPlot = c('scaleFreeFitPlot', 'p', 1, 'character') spec = t(as.data.frame(spec_list)) opt = getopt(spec) # arguments are accessed by long flag name (the first column in the spec matrix) # NOT by element name in the spec_list # example: opt$help, opt$expression_file suppressPackageStartupMessages({ library(MASS) library(ggplot2) library(ggdendro) library(class) library(cluster) library(impute) library(Hmisc) library(WGCNA) }) # allow multi-threads for WGCNA if(!is.null(opt$threads)){ allowWGCNAThreads(nThreads = opt$threads) } # disableWGCNAThreads() # read expression data # column names are genes, rows are samples expressionData = read.csv(opt$expressionData, header = TRUE, row.names = 1) cat("Calculate R power table\n") powers = seq(1, opt$betaMaximum) RpowerTable = pickSoftThreshold(expressionData, powerVector = powers)[[2]] cat("write R power table into file\n") write.csv(RpowerTable, file=opt$rPowerTableOutput) pdf(file = opt$scaleFreeFitPlot) Rpower = RpowerTable[,1] # plot scale free fit R^2 versus different soft threshold beta signedRSq = -sign(RpowerTable[, 3]) * RpowerTable[, 2] Rpower_df = data.frame(Rpower, signedRSq) p = ggplot(aes(x = Rpower, y = signedRSq), data = Rpower_df) p + geom_label(label = Rpower, color = "red") + xlab("R power") + ylab(expression("Scale Free Topology Model Fit, Signed "~R^2)) + geom_hline(yintercept = 0.95, color = "blue") # mean connectivity versus different soft threshold beta meanConn = RpowerTable[,5] meanConn_df = data.frame(Rpower, meanConn) p = ggplot(aes(x = Rpower, y = meanConn), data = meanConn_df) p + geom_label(label = Rpower, color = "red") + xlab("R power") + ylab("Mean connectivity") dev.off()