Mercurial > repos > mmonsoor > camera_combinexsannos
view lib.r @ 11:837c6955e4e9 draft
planemo upload commit e440674afa3e58c46100b0ac7c305a6f46ecbbdc
author | lecorguille |
---|---|
date | Wed, 19 Sep 2018 03:22:42 -0400 |
parents | 198b035d4848 |
children | 961089e21ae2 |
line wrap: on
line source
# lib.r # This function retrieve a xset like object #@author Gildas Le Corguille lecorguille@sb-roscoff.fr getxcmsSetObject <- function(xobject) { # XCMS 1.x if (class(xobject) == "xcmsSet") return (xobject) # XCMS 3.x if (class(xobject) == "XCMSnExp") { # Get the legacy xcmsSet object suppressWarnings(xset <- as(xobject, 'xcmsSet')) if (is.null(xset@phenoData$sample_group)) sampclass(xset) = "." else sampclass(xset) <- xset@phenoData$sample_group if (!is.null(xset@phenoData$sample_name)) rownames(xset@phenoData) = xset@phenoData$sample_name return (xset) } } #@author G. Le Corguille #The function create a pdf from the different png generated by diffreport diffreport_png2pdf <- function(filebase) { dir.create("pdf") pdfEicOutput = paste0("pdf/",filebase,"-eic_pdf.pdf") pdfBoxOutput = paste0("pdf/",filebase,"-box_pdf.pdf") system(paste0("gm convert ",filebase,"_eic/*.png ",pdfEicOutput)) system(paste0("gm convert ",filebase,"_box/*.png ",pdfBoxOutput)) } #@author G. Le Corguille #This function convert if it is required the Retention Time in minutes RTSecondToMinute <- function(variableMetadata, convertRTMinute) { if (convertRTMinute){ #converting the retention times (seconds) into minutes print("converting the retention times into minutes in the variableMetadata") variableMetadata[,"rt"]=variableMetadata[,"rt"]/60 variableMetadata[,"rtmin"]=variableMetadata[,"rtmin"]/60 variableMetadata[,"rtmax"]=variableMetadata[,"rtmax"]/60 } return (variableMetadata) } #@author G. Le Corguille #This function format ions identifiers formatIonIdentifiers <- function(variableMetadata, numDigitsRT=0, numDigitsMZ=0) { splitDeco = strsplit(as.character(variableMetadata$name),"_") idsDeco = sapply(splitDeco, function(x) { deco=unlist(x)[2]; if (is.na(deco)) return ("") else return(paste0("_",deco)) }) namecustom = make.unique(paste0("M",round(variableMetadata[,"mz"],numDigitsMZ),"T",round(variableMetadata[,"rt"],numDigitsRT),idsDeco)) variableMetadata=cbind(name=variableMetadata$name, namecustom=namecustom, variableMetadata[,!(colnames(variableMetadata) %in% c("name"))]) return(variableMetadata) } #The function annotateDiffreport without the corr function which bugs annotatediff <- function(xset=xset, listArguments=listArguments, variableMetadataOutput="variableMetadata.tsv", dataMatrixOutput="dataMatrix.tsv") { # Resolve the bug with x11, with the function png options(bitmapType='cairo') #Check if the fillpeaks step has been done previously, if it hasn't, there is an error message and the execution is stopped. res=try(is.null(xset@filled)) # ------ annot ------- listArguments[["calcCiS"]]=as.logical(listArguments[["calcCiS"]]) listArguments[["calcIso"]]=as.logical(listArguments[["calcIso"]]) listArguments[["calcCaS"]]=as.logical(listArguments[["calcCaS"]]) # common parameters listArguments4annotate = list(object=xset, nSlaves=listArguments[["nSlaves"]],sigma=listArguments[["sigma"]],perfwhm=listArguments[["perfwhm"]], maxcharge=listArguments[["maxcharge"]],maxiso=listArguments[["maxiso"]],minfrac=listArguments[["minfrac"]], ppm=listArguments[["ppm"]],mzabs=listArguments[["mzabs"]],quick=listArguments[["quick"]], polarity=listArguments[["polarity"]],max_peaks=listArguments[["max_peaks"]],intval=listArguments[["intval"]]) # quick == FALSE if(listArguments[["quick"]]==FALSE) { listArguments4annotate = append(listArguments4annotate, list(graphMethod=listArguments[["graphMethod"]],cor_eic_th=listArguments[["cor_eic_th"]],pval=listArguments[["pval"]], calcCiS=listArguments[["calcCiS"]],calcIso=listArguments[["calcIso"]],calcCaS=listArguments[["calcCaS"]])) # no ruleset if (!is.null(listArguments[["multiplier"]])) { listArguments4annotate = append(listArguments4annotate, list(multiplier=listArguments[["multiplier"]])) } # ruleset else { rulset=read.table(listArguments[["rules"]], h=T, sep=";") if (ncol(rulset) < 4) rulset=read.table(listArguments[["rules"]], h=T, sep="\t") if (ncol(rulset) < 4) rulset=read.table(listArguments[["rules"]], h=T, sep=",") if (ncol(rulset) < 4) { error_message="Your ruleset file seems not well formatted. The column separators accepted are ; , and tabulation" print(error_message) stop(error_message) } listArguments4annotate = append(listArguments4annotate, list(rules=rulset)) } } # launch annotate xa = do.call("annotate", listArguments4annotate) peakList=getPeaklist(xa,intval=listArguments[["intval"]]) peakList=cbind(groupnames(xa@xcmsSet),peakList); colnames(peakList)[1] = c("name"); # --- dataMatrix --- dataMatrix = peakList[,(make.names(colnames(peakList)) %in% c("name", make.names(sampnames(xa@xcmsSet))))] write.table(dataMatrix, sep="\t", quote=FALSE, row.names=FALSE, file=dataMatrixOutput) # --- Multi condition : diffreport --- diffrepOri=NULL if (!is.null(listArguments[["runDiffreport"]]) & nlevels(sampclass(xset))>=2) { #Check if the fillpeaks step has been done previously, if it hasn't, there is an error message and the execution is stopped. res=try(is.null(xset@filled)) classes=levels(sampclass(xset)) x=1:(length(classes)-1) for (i in seq(along=x) ) { y=1:(length(classes)) for (n in seq(along=y)){ if(i+n <= length(classes)){ filebase=paste(classes[i],class2=classes[i+n],sep="-vs-") diffrep=diffreport(object=xset,class1=classes[i],class2=classes[i+n],filebase=filebase,eicmax=listArguments[["eicmax"]],eicwidth=listArguments[["eicwidth"]],sortpval=TRUE,value=listArguments[["value"]],h=listArguments[["h"]],w=listArguments[["w"]],mzdec=listArguments[["mzdec"]],missing=0) diffrepOri = diffrep # renamming of the column rtmed to rt to fit with camera peaklist function output colnames(diffrep)[colnames(diffrep)=="rtmed"] <- "rt" colnames(diffrep)[colnames(diffrep)=="mzmed"] <- "mz" # combines results and reorder columns diffrep = merge(peakList, diffrep[,c("name","fold","tstat","pvalue")], by.x="name", by.y="name", sort=F) diffrep = cbind(diffrep[,!(colnames(diffrep) %in% c(sampnames(xa@xcmsSet)))],diffrep[,(colnames(diffrep) %in% c(sampnames(xa@xcmsSet)))]) diffrep = RTSecondToMinute(diffrep, listArguments[["convertRTMinute"]]) diffrep = formatIonIdentifiers(diffrep, numDigitsRT=listArguments[["numDigitsRT"]], numDigitsMZ=listArguments[["numDigitsMZ"]]) if(listArguments[["sortpval"]]){ diffrep=diffrep[order(diffrep$pvalue), ] } dir.create("tabular") write.table(diffrep, sep="\t", quote=FALSE, row.names=FALSE, file=paste("tabular/",filebase,"_tsv.tabular",sep="")) if (listArguments[["eicmax"]] != 0) { diffreport_png2pdf(filebase) } } } } } # --- variableMetadata --- variableMetadata=peakList[,!(make.names(colnames(peakList)) %in% c(make.names(sampnames(xa@xcmsSet))))] variableMetadata = RTSecondToMinute(variableMetadata, listArguments[["convertRTMinute"]]) variableMetadata = formatIonIdentifiers(variableMetadata, numDigitsRT=listArguments[["numDigitsRT"]], numDigitsMZ=listArguments[["numDigitsMZ"]]) # if we have 2 conditions, we keep stat of diffrep if (!is.null(listArguments[["runDiffreport"]]) & nlevels(sampclass(xset))==2) { variableMetadata = merge(variableMetadata, diffrep[,c("name","fold","tstat","pvalue")],by.x="name", by.y="name", sort=F) if(exists("listArguments[[\"sortpval\"]]")){ variableMetadata=variableMetadata[order(variableMetadata$pvalue), ] } } variableMetadataOri=variableMetadata write.table(variableMetadata, sep="\t", quote=FALSE, row.names=FALSE, file=variableMetadataOutput) return(list("xa"=xa,"diffrep"=diffrepOri,"variableMetadata"=variableMetadataOri)); } combinexsAnnos_function <- function(xaP, xaN, listOFlistArgumentsP,listOFlistArgumentsN, diffrepP=NULL,diffrepN=NULL,pos=TRUE,tol=2,ruleset=NULL,keep_meta=TRUE, convertRTMinute=F, numDigitsMZ=0, numDigitsRT=0, variableMetadataOutput="variableMetadata.tsv"){ #Load the two Rdata to extract the xset objects from positive and negative mode cat("\tObject xset from positive mode\n") print(xaP) cat("\n") cat("\tObject xset from negative mode\n") print(xaN) cat("\n") cat("\n") cat("\tCombining...\n") #Convert the string to numeric for creating matrix row=as.numeric(strsplit(ruleset,",")[[1]][1]) column=as.numeric(strsplit(ruleset,",")[[1]][2]) ruleset=cbind(row,column) #Test if the file comes from an older version tool if ((!is.null(xaP)) & (!is.null(xaN))) { #Launch the combinexsannos function from CAMERA cAnnot=combinexsAnnos(xaP, xaN,pos=pos,tol=tol,ruleset=ruleset) } else { stop("You must relauch the CAMERA.annotate step with the lastest version.") } if(pos){ xa=xaP listOFlistArgumentsP=listOFlistArguments mode="neg. Mode" } else { xa=xaN listOFlistArgumentsN=listOFlistArguments mode="pos. Mode" } peakList=getPeaklist(xa) peakList=cbind(groupnames(xa@xcmsSet),peakList); colnames(peakList)[1] = c("name"); variableMetadata=cbind(peakList, cAnnot[, c("isotopes", "adduct", "pcgroup",mode)]); variableMetadata=variableMetadata[,!(colnames(variableMetadata) %in% c(sampnames(xa@xcmsSet)))] #Test if there are more than two classes (conditions) if ( nlevels(sampclass(xaP@xcmsSet))==2 & (!is.null(diffrepN)) & (!is.null(diffrepP))) { diffrepP = diffrepP[,c("name","fold","tstat","pvalue")]; colnames(diffrepP) = paste("P.",colnames(diffrepP),sep="") diffrepN = diffrepN[,c("name","fold","tstat","pvalue")]; colnames(diffrepN) = paste("N.",colnames(diffrepN),sep="") variableMetadata = merge(variableMetadata, diffrepP, by.x="name", by.y="P.name") variableMetadata = merge(variableMetadata, diffrepN, by.x="name", by.y="N.name") } rownames(variableMetadata) = NULL #TODO: checker #colnames(variableMetadata)[1:2] = c("name","mz/rt"); variableMetadata = RTSecondToMinute(variableMetadata, convertRTMinute) variableMetadata = formatIonIdentifiers(variableMetadata, numDigitsRT=numDigitsRT, numDigitsMZ=numDigitsMZ) #If the user want to keep only the metabolites which match a difference if(keep_meta){ variableMetadata=variableMetadata[variableMetadata[,c(mode)]!="",] } #Write the output into a tsv file write.table(variableMetadata, sep="\t", quote=FALSE, row.names=FALSE, file=variableMetadataOutput) return(variableMetadata); } # This function get the raw file path from the arguments getRawfilePathFromArguments <- function(singlefile, zipfile, listArguments) { if (!is.null(listArguments[["zipfile"]])) zipfile = listArguments[["zipfile"]] if (!is.null(listArguments[["zipfilePositive"]])) zipfile = listArguments[["zipfilePositive"]] if (!is.null(listArguments[["zipfileNegative"]])) zipfile = listArguments[["zipfileNegative"]] if (!is.null(listArguments[["singlefile_galaxyPath"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPath"]]; singlefile_sampleNames = listArguments[["singlefile_sampleName"]] } if (!is.null(listArguments[["singlefile_galaxyPathPositive"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPathPositive"]]; singlefile_sampleNames = listArguments[["singlefile_sampleNamePositive"]] } if (!is.null(listArguments[["singlefile_galaxyPathNegative"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPathNegative"]]; singlefile_sampleNames = listArguments[["singlefile_sampleNameNegative"]] } if (exists("singlefile_galaxyPaths")){ singlefile_galaxyPaths = unlist(strsplit(singlefile_galaxyPaths,",")) singlefile_sampleNames = unlist(strsplit(singlefile_sampleNames,",")) singlefile=NULL for (singlefile_galaxyPath_i in seq(1:length(singlefile_galaxyPaths))) { singlefile_galaxyPath=singlefile_galaxyPaths[singlefile_galaxyPath_i] singlefile_sampleName=singlefile_sampleNames[singlefile_galaxyPath_i] singlefile[[singlefile_sampleName]] = singlefile_galaxyPath } } for (argument in c("zipfile","zipfilePositive","zipfileNegative","singlefile_galaxyPath","singlefile_sampleName","singlefile_galaxyPathPositive","singlefile_sampleNamePositive","singlefile_galaxyPathNegative","singlefile_sampleNameNegative")) { listArguments[[argument]]=NULL } return(list(zipfile=zipfile, singlefile=singlefile, listArguments=listArguments)) } # This function retrieve the raw file in the working directory # - if zipfile: unzip the file with its directory tree # - if singlefiles: set symlink with the good filename retrieveRawfileInTheWorkingDirectory <- function(singlefile, zipfile) { if(!is.null(singlefile) && (length("singlefile")>0)) { for (singlefile_sampleName in names(singlefile)) { singlefile_galaxyPath = singlefile[[singlefile_sampleName]] if(!file.exists(singlefile_galaxyPath)){ error_message=paste("Cannot access the sample:",singlefile_sampleName,"located:",singlefile_galaxyPath,". Please, contact your administrator ... if you have one!") print(error_message); stop(error_message) } file.symlink(singlefile_galaxyPath,singlefile_sampleName) } directory = "." } if(!is.null(zipfile) && (zipfile!="")) { if(!file.exists(zipfile)){ error_message=paste("Cannot access the Zip file:",zipfile,". Please, contact your administrator ... if you have one!") print(error_message) stop(error_message) } #list all file in the zip file #zip_files=unzip(zipfile,list=T)[,"Name"] #unzip suppressWarnings(unzip(zipfile, unzip="unzip")) #get the directory name filesInZip=unzip(zipfile, list=T); directories=unique(unlist(lapply(strsplit(filesInZip$Name,"/"), function(x) x[1]))); directories=directories[!(directories %in% c("__MACOSX")) & file.info(directories)$isdir] directory = "." if (length(directories) == 1) directory = directories cat("files_root_directory\t",directory,"\n") } return (directory) } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/CAMERA/issues/33#issuecomment-405168524 # https://github.com/sneumann/xcms/commit/950a3fe794cdb6b0fda88696e31aab3d97a3b7dd ############################################################ ## getEIC getEIC <- function(object, mzrange, rtrange = 200, groupidx, sampleidx = sampnames(object), rt = c("corrected", "raw")) { files <- filepaths(object) grp <- groups(object) samp <- sampnames(object) prof <- profinfo(object) rt <- match.arg(rt) if (is.numeric(sampleidx)) sampleidx <- sampnames(object)[sampleidx] sampidx <- match(sampleidx, sampnames(object)) if (!missing(groupidx)) { if (is.numeric(groupidx)) groupidx <- groupnames(object)[unique(as.integer(groupidx))] grpidx <- match(groupidx, groupnames(object, template = groupidx)) } if (missing(mzrange)) { if (missing(groupidx)) stop("No m/z range or groups specified") if (any(is.na(groupval(object, value = "mz")))) warning( "`NA` values in xcmsSet. Use fillPeaks() on the object to fill", "-in missing peak values. Note however that this will also ", "insert intensities of 0 for peaks that can not be filled in.") mzmin <- apply(groupval(object, value = "mzmin"), 1, min, na.rm = TRUE) mzmax <- apply(groupval(object, value = "mzmax"), 1, max, na.rm = TRUE) mzrange <- matrix(c(mzmin[grpidx], mzmax[grpidx]), ncol = 2) ## if (any(is.na(groupval(object, value = "mz")))) ## stop('Please use fillPeaks() to fill up NA values !') ## mzmin <- -rowMax(-groupval(object, value = "mzmin")) ## mzmax <- rowMax(groupval(object, value = "mzmax")) ## mzrange <- matrix(c(mzmin[grpidx], mzmax[grpidx]), ncol = 2) } else if (all(c("mzmin","mzmax") %in% colnames(mzrange))) mzrange <- mzrange[,c("mzmin", "mzmax"),drop=FALSE] else if (is.null(dim(mzrange))) stop("mzrange must be a matrix") colnames(mzrange) <- c("mzmin", "mzmax") if (length(rtrange) == 1) { if (missing(groupidx)) rtrange <- matrix(rep(range(object@rt[[rt]][sampidx]), nrow(mzrange)), ncol = 2, byrow = TRUE) else { rtrange <- retexp(grp[grpidx,c("rtmin","rtmax"),drop=FALSE], rtrange) } } else if (is.null(dim(rtrange))) stop("rtrange must be a matrix or single number") colnames(rtrange) <- c("rtmin", "rtmax") ## Ensure that we've got corrected retention time if requested. if (is.null(object@rt[[rt]])) stop(rt, " retention times not present in 'object'!") ## Ensure that the defined retention time range is within the rtrange of the ## object: we're using the max minimal rt of all files and the min maximal rt rtrs <- lapply(object@rt[[rt]], range) rtr <- c(max(unlist(lapply(rtrs, "[", 1))), min(unlist(lapply(rtrs, "[", 2)))) ## Check if we've got a range which is completely off: if (any(rtrange[, "rtmin"] >= rtr[2] | rtrange[, "rtmax"] <= rtr[1])) { outs <- which(rtrange[, "rtmin"] >= rtr[2] | rtrange[, "rtmax"] <= rtr[1]) stop(length(outs), " of the specified 'rtrange' are completely outside ", "of the retention time range of 'object' which is (", rtr[1], ", ", rtr[2], "). The first was: (", rtrange[outs[1], "rtmin"], ", ", rtrange[outs[1], "rtmax"], "!") } lower_rt_outside <- rtrange[, "rtmin"] < rtr[1] upper_rt_outside <- rtrange[, "rtmax"] > rtr[2] if (any(lower_rt_outside) | any(upper_rt_outside)) { ## Silently fix these ranges. rtrange[lower_rt_outside, "rtmin"] <- rtr[1] rtrange[upper_rt_outside, "rtmax"] <- rtr[2] } if (missing(groupidx)) gnames <- character(0) else gnames <- groupidx eic <- vector("list", length(sampleidx)) names(eic) <- sampleidx for (i in seq(along = sampidx)) { ## cat(sampleidx[i], "") flush.console() ## getXcmsRaw takes care of rt correction, susetting to scanrage and other ## stuff. lcraw <- getXcmsRaw(object, sampleidx = sampidx[i], rt=rt) currenteic <- xcms::getEIC(lcraw, mzrange, rtrange, step = prof$step) eic[[i]] <- currenteic@eic[[1]] rm(lcraw) gc() } ## cat("\n") invisible(new("xcmsEIC", eic = eic, mzrange = mzrange, rtrange = rtrange, rt = rt, groupnames = gnames)) } #@TODO: remove this function as soon as we can use xcms 3.x.x from Bioconductor 3.7 # https://github.com/sneumann/CAMERA/issues/33#issuecomment-405168524 # https://github.com/sneumann/xcms/commit/950a3fe794cdb6b0fda88696e31aab3d97a3b7dd ############################################################ ## diffreport diffreport = function(object, class1 = levels(sampclass(object))[1], class2 = levels(sampclass(object))[2], filebase = character(), eicmax = 0, eicwidth = 200, sortpval = TRUE, classeic = c(class1,class2), value = c("into","maxo","intb"), metlin = FALSE, h = 480, w = 640, mzdec=2, missing = numeric(), ...) { if ( nrow(object@groups)<1 || length(object@groupidx) <1) { stop("No group information. Use group().") } if (!is.numeric(w) || !is.numeric(h)) stop("'h' and 'w' have to be numeric") ## require(multtest) || stop("Couldn't load multtest") value <- match.arg(value) groupmat <- groups(object) if (length(groupmat) == 0) stop("No group information found") samples <- sampnames(object) n <- length(samples) classlabel <- sampclass(object) classlabel <- levels(classlabel)[as.vector(unclass(classlabel))] values <- groupval(object, "medret", value=value) indecies <- groupval(object, "medret", value = "index") if (!all(c(class1,class2) %in% classlabel)) stop("Incorrect Class Labels") ## c1 and c2 are column indices of class1 and class2 resp. c1 <- which(classlabel %in% class1) c2 <- which(classlabel %in% class2) ceic <- which(classlabel %in% classeic) if (length(intersect(c1, c2)) > 0) stop("Intersecting Classes") ## Optionally replace NA values with the value provided with missing if (length(missing)) { if (is.numeric(missing)) { ## handles NA, Inf and -Inf values[, c(c1, c2)][!is.finite(values[, c(c1, c2)])] <- missing[1] } else stop("'missing' should be numeric") } ## Check against missing Values if (any(is.na(values[, c(c1, c2)]))) warning("`NA` values in xcmsSet. Use fillPeaks() on the object to fill", "-in missing peak values. Note however that this will also ", "insert intensities of 0 for peaks that can not be filled in.") mean1 <- rowMeans(values[,c1,drop=FALSE], na.rm = TRUE) mean2 <- rowMeans(values[,c2,drop=FALSE], na.rm = TRUE) ## Calculate fold change. ## For foldchange <1 set fold to 1/fold ## See tstat to check which was higher fold <- mean2 / mean1 fold[!is.na(fold) & fold < 1] <- 1/fold[!is.na(fold) & fold < 1] testval <- values[,c(c1,c2)] ## Replace eventual infinite values with NA (CAMERA issue #33) testval[is.infinite(testval)] <- NA testclab <- c(rep(0,length(c1)),rep(1,length(c2))) if (min(length(c1), length(c2)) >= 2) { tstat <- mt.teststat(testval, testclab, ...) pvalue <- xcms:::pval(testval, testclab, tstat) } else { message("Too few samples per class, skipping t-test.") tstat <- pvalue <- rep(NA,nrow(testval)) } stat <- data.frame(fold = fold, tstat = tstat, pvalue = pvalue) if (length(levels(sampclass(object))) >2) { pvalAnova<-c() for(i in 1:nrow(values)){ var<-as.numeric(values[i,]) ano<-summary(aov(var ~ sampclass(object)) ) pvalAnova<-append(pvalAnova, unlist(ano)["Pr(>F)1"]) } stat<-cbind(stat, anova= pvalAnova) } if (metlin) { neutralmass <- groupmat[,"mzmed"] + ifelse(metlin < 0, 1, -1) metlin <- abs(metlin) digits <- ceiling(-log10(metlin))+1 metlinurl <- paste("http://metlin.scripps.edu/simple_search_result.php?mass_min=", round(neutralmass - metlin, digits), "&mass_max=", round(neutralmass + metlin, digits), sep="") values <- cbind(metlin = metlinurl, values) } twosamp <- cbind(name = groupnames(object), stat, groupmat, values) if (sortpval) { tsidx <- order(twosamp[,"pvalue"]) twosamp <- twosamp[tsidx,] rownames(twosamp) <- 1:nrow(twosamp) values<-values[tsidx,] } else tsidx <- 1:nrow(values) if (length(filebase)) write.table(twosamp, paste(filebase, ".tsv", sep = ""), quote = FALSE, sep = "\t", col.names = NA) if (eicmax > 0) { if (length(unique(peaks(object)[,"rt"])) > 1) { ## This looks like "normal" LC data eicmax <- min(eicmax, length(tsidx)) eics <- getEIC(object, rtrange = eicwidth*1.1, sampleidx = ceic, groupidx = tsidx[seq(length = eicmax)]) if (length(filebase)) { eicdir <- paste(filebase, "_eic", sep="") boxdir <- paste(filebase, "_box", sep="") dir.create(eicdir) dir.create(boxdir) if (capabilities("png")){ xcms:::xcmsBoxPlot(values[seq(length = eicmax),], sampclass(object), dirpath=boxdir, pic="png", width=w, height=h) png(file.path(eicdir, "%003d.png"), width = w, height = h) } else { xcms:::xcmsBoxPlot(values[seq(length = eicmax),], sampclass(object), dirpath=boxdir, pic="pdf", width=w, height=h) pdf(file.path(eicdir, "%003d.pdf"), width = w/72, height = h/72, onefile = FALSE) } } plot(eics, object, rtrange = eicwidth, mzdec=mzdec) if (length(filebase)) dev.off() } else { ## This looks like a direct-infusion single spectrum if (length(filebase)) { eicdir <- paste(filebase, "_eic", sep="") boxdir <- paste(filebase, "_box", sep="") dir.create(eicdir) dir.create(boxdir) if (capabilities("png")){ xcmsBoxPlot(values[seq(length = eicmax),], sampclass(object), dirpath=boxdir, pic="png", width=w, height=h) png(file.path(eicdir, "%003d.png"), width = w, height = h, units = "px") } else { xcmsBoxPlot(values[seq(length = eicmax),], sampclass(object), dirpath=boxdir, pic="pdf", width=w, height=h) pdf(file.path(eicdir, "%003d.pdf"), width = w/72, height = h/72, onefile = FALSE) } } plotSpecWindow(object, gidxs = tsidx[seq(length = eicmax)], borderwidth=1) if (length(filebase)) dev.off() } } invisible(twosamp) }