Mercurial > repos > mnhn65mo > vigiechiro
view IdValid.R @ 0:0e3db3a308c0 draft default tip
Uploaded
author | mnhn65mo |
---|---|
date | Mon, 06 Aug 2018 09:13:29 -0400 |
parents | |
children |
line wrap: on
line source
library(data.table) ValidHier=function(x,y) #used to write validator id over observer id { if(y==""){x}else{y} } f2p <- function(x) #get date-time data from recording file names { if (is.data.frame((x)[1])) {pretemps <- vector(length = nrow(x))} op <- options(digits.secs = 3) pretemps <- paste(substr(x, nchar(x) - 18, nchar(x)-4), ".", substr(x, nchar(x) - 2, nchar(x)), sep = "") strptime(pretemps, "%Y%m%d_%H%M%OS",tz="UTC")-7200 } args <- commandArgs(trailingOnly = TRUE) #print(args) #for test #inputest=list.files("C:/Users/Yves Bas/Documents/GitHub/65MO_Galaxy-E/raw_scripts/Vigie-Chiro/output_IdCorrect_2ndLayer_input_IdValid/",full.names=T) #for (i in 1:length(inputest)) #{ #args=c(inputest[i],"Referentiel_seuils_C2.csv") #args=c("5857d56d9ebce1000ed89ea7-DataCorrC2.csv","Referentiel_seuils_C2.csv") IdCorrect=fread(args[1]) RefSeuil=fread(args[2]) #IdV=as.data.frame(subset(IdCorrect,select=observateur_taxon:validateur_probabilite)) #Step 0 :compute id score from 2nd Layer test=match("participation",names(IdCorrect)) IdCorrect$IdScore=apply(as.data.frame(IdCorrect)[,(test+1):(ncol(IdCorrect)-1)],MARGIN=1,FUN=max) #compute true success probabilities according to logistic regression issued from "Referentiel_seuils" CorrSp=match(IdCorrect$ProbEsp_C2bs,RefSeuil$Espece) PSp=RefSeuil$Pente[CorrSp] ISp=RefSeuil$Int[CorrSp] suppressWarnings(IdCorrect$IdProb<-mapply(FUN=function(w,x,y) if((!is.na(y))&(y>0)&(y<1000)) {(exp(y*w+x)/(1+exp(y*w+x)))}else{w} ,IdCorrect$IdScore,ISp,PSp)) #Step 1 :compute id with confidence regarding a hierarchy (validator > observer) IdCorrect$IdV=mapply(ValidHier,IdCorrect$observateur_taxon,IdCorrect$validateur_taxon) IdCorrect$ConfV=mapply(ValidHier,IdCorrect$observateur_probabilite ,IdCorrect$validateur_probabilite) #print(paste(args[1],length(subset(IdCorrect$ConfV,IdCorrect$ConfV!="")))) #Step 2: Get numerictime data suppressWarnings(IdCorrect$Session<-NULL) suppressWarnings(IdCorrect$TimeNum<-NULL) if (substr(IdCorrect$`nom du fichier`[1],2,2)=="i") #for car/walk transects { FileInfo=as.data.table(tstrsplit(IdCorrect$`nom du fichier`,"-")) IdCorrect$Session=as.numeric(substr(FileInfo$V4,5,nchar(FileInfo$V4))) TimeSec=as.data.table(tstrsplit(FileInfo$V5,"_")) TimeSec=as.data.frame(TimeSec) if(sum(TimeSec[,(ncol(TimeSec)-1)]!="00000")==0) #to deal with double Kaleidoscope treatments { print("NOMS DE FICHIERS NON CONFORMES") print("Vous les avez probablement traiter 2 fois par Kaleidoscope") stop("Merci de nous signaler cette erreur par mail pour correction") }else{ IdCorrect$TimeNum=(IdCorrect$Session*800 +as.numeric(TimeSec[,(ncol(TimeSec)-1)]) +as.numeric(TimeSec[,(ncol(TimeSec))])/1000) } }else{ if(substr(IdCorrect$`nom du fichier`[1],2,2)=="a") #for stationary recordings { DateRec=as.POSIXlt(f2p(IdCorrect$`nom du fichier`)) Nuit=format(as.Date(DateRec-43200*(DateRec$hour<12)),format="%d/%m/%Y") #Nuit[is.na(Nuit)]=0 IdCorrect$Session=Nuit IdCorrect$TimeNum=as.numeric(DateRec) }else{ print("NOMS DE FICHIERS NON CONFORMES") stop("Ils doivent commencer par Cir (routier/pedestre) ou par Car (points fixes") } } #Step 3 :treat sequentially each species identified by Tadarida-C IdExtrap=vector() #to store the id extrapolated from validations IdC2=IdCorrect[0,] #to store data in the right order TypeE=vector() #to store the type of extrapolation made for (j in 1:nlevels(as.factor(IdCorrect$ProbEsp_C2bs))) { IdSp=subset(IdCorrect ,IdCorrect$ProbEsp_C2bs==levels(as.factor(IdCorrect$ProbEsp_C2bs))[j]) if(sum(IdSp$IdV=="")==(nrow(IdSp))) #case 1 : no validation no change { IdC2=rbind(IdC2,IdSp) IdExtrap=c(IdExtrap,rep(IdSp$ProbEsp_C2bs[1],nrow(IdSp))) TypeE=c(TypeE,rep(0,nrow(IdSp))) }else{ #case 2: some validation Vtemp=subset(IdSp,IdSp$IdV!="") #case2A: validations are homogeneous if(nlevels(as.factor(Vtemp$IdV))==1) { IdC2=rbind(IdC2,IdSp) IdExtrap=c(IdExtrap,rep(Vtemp$IdV[1],nrow(IdSp))) TypeE=c(TypeE,rep(2,nrow(IdSp))) }else{ #case 2B: validations are heterogeneous #case 2B1: some validations confirms the species identified by Tadarida and highest confidence are confirmed subVT=subset(Vtemp,Vtemp$IdV==levels(as.factor(IdCorrect$ProbEsp_C2bs))[j]) subVF=subset(Vtemp,Vtemp$IdV!=levels(as.factor(IdCorrect$ProbEsp_C2bs))[j]) if((nrow(subVT)>0)&(max(subVT$IdProb)>max(subVF$IdProb))) { Vtemp=Vtemp[order(Vtemp$IdProb),] test=(Vtemp$IdV!=Vtemp$ProbEsp_C2bs) Fr1=max(which(test == TRUE)) #find the error with highest indices Thr1=mean(Vtemp$IdProb[(Fr1):(Fr1+1)]) #define first threshold as the median confidence between the first error and the confirmed ID right over it #id over this threshold are considered right IdHC=subset(IdSp,IdSp$IdProb>Thr1) IdC2=rbind(IdC2,IdHC) IdExtrap=c(IdExtrap,rep(Vtemp$IdV[nrow(Vtemp)],nrow(IdHC))) TypeE=c(TypeE,rep(2,nrow(IdHC))) #id under this threshold are attributed to validated id closest in time Vtemp=Vtemp[order(Vtemp$TimeNum),] cuts <- c(-Inf, Vtemp$TimeNum[-1]-diff(Vtemp$TimeNum)/2, Inf) CorrV=findInterval(IdSp$TimeNum, cuts) IdE=Vtemp$IdV[CorrV] IdEL=subset(IdE,IdSp$IdProb<=Thr1) IdLC=subset(IdSp,IdSp$IdProb<=Thr1) IdExtrap=c(IdExtrap,IdEL) TypeE=c(TypeE,rep(1,length(IdEL))) IdC2=rbind(IdC2,IdLC) }else{ #case 2B2: all validations concerns errors #id are extrapolated on time only Vtemp=Vtemp[order(Vtemp$TimeNum),] cuts <- c(-Inf, Vtemp$TimeNum[-1]-diff(Vtemp$TimeNum)/2, Inf) CorrV=findInterval(IdSp$TimeNum, cuts) IdE=Vtemp$IdV[CorrV] IdExtrap=c(IdExtrap,IdE) TypeE=c(TypeE,rep(1,length(IdE))) IdC2=rbind(IdC2,IdSp) } } } } test1=(nrow(IdC2)==length(IdExtrap)) test2=(nrow(IdC2)==nrow(IdCorrect)) if((test1==F)|(test2==F)) { (stop("Erreur de traitement !!!")) } IdC2$IdExtrap=IdExtrap IdC2$TypeE=TypeE IdC2=IdC2[order(IdC2$IdProb,decreasing=T),] IdC2=IdC2[order(IdC2$ConfV,decreasing=T),] IdC2=IdC2[order(IdC2$`nom du fichier`),] #discard duplicated species within the same files (= false positives corrected by 2nd layer) IdC2=unique(IdC2,by=c("nom du fichier","IdExtrap")) write.table(IdC2,"output.tabular",row.names=F,sep="\t") #write.table(IdC2,paste0(substr(args[1],1,nchar(args[1])-15),"-IdC2.csv"),row.names=F,sep="\t")