Mercurial > repos > mora-lab > spia
comparison SPIA.xml @ 4:6445741c6c02 draft default tip
Uploaded
| author | mora-lab |
|---|---|
| date | Thu, 20 May 2021 12:19:23 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 3:f0759e65c834 | 4:6445741c6c02 |
|---|---|
| 1 <tool id="SPIA" name="SPIA (Signaling Pathway Impact Analysis)" version="0.1.0" > | |
| 2 <description>A method based on over-representation and signaling perturbation accumulation to analyze KEGG signaling pathways.</description> | |
| 3 | |
| 4 <requirements> | |
| 5 <requirement type="package" version="1.20.3">r-getopt</requirement> | |
| 6 <requirement type="package" version="2.42.0">bioconductor-SPIA</requirement> | |
| 7 </requirements> | |
| 8 | |
| 9 <command detect_errors="exit_code"><![CDATA[ | |
| 10 Rscript '$__tool_directory__/SPIA.R' | |
| 11 -D '$input_data' | |
| 12 -O '$organism' | |
| 13 -R '$sigP_output' | |
| 14 | |
| 15 -P '$adv.P_value_threshold' | |
| 16 | |
| 17 -N '$adv.Number_bootstrap' | |
| 18 -C '$adv.method_combine_pvalue' | |
| 19 #if $adv.plot_perturbation=="True": | |
| 20 -W | |
| 21 -L '$SPIA_Perturbation_Plots' | |
| 22 #end if | |
| 23 | |
| 24 #if $adv.pathwayId !="": | |
| 25 -I '$adv.pathwayId' | |
| 26 #end if | |
| 27 | |
| 28 ]]></command> | |
| 29 | |
| 30 <inputs> | |
| 31 <param type="data" name="input_data" format="csv" multiple="false" label="Input data" help="A csv file including the columns ENTREZ, logFC, and adj.P.Val"/> | |
| 32 <param type="text" name="organism" value="hsa" label="Organism" help="A three letter character designating the organism. Default is `hsa` (human). See a full list at https://www.genome.jp/kegg/catalog/org_list.html" /> | |
| 33 | |
| 34 <section name="adv" title="Advanced Options" expanded="false"> | |
| 35 <param type="float" name="P_value_threshold" label="P value threshold to select DEgenes" value="0.05" min="0.00" max="1.00" help="Set a threshold value to define differentially expressed genes"/> | |
| 36 <param type="integer" name="Number_bootstrap" value="2000" min="100" label="Bootstrap iterations" help="Number of bootstrap iterations used to compute the P PERT value. Should be larger than 100. A recommended value is 2000." /> | |
| 37 <param type="select" name="method_combine_pvalue" label="Method to combine P values" help="Method used to combine the two types of p-values. If set to 'fisher' it will use Fisher's method. If set to 'norminv' it will use the normal inversion method."> | |
| 38 <option value="fisher" selected="True">fisher</option> | |
| 39 <option value="norminv">norminv</option> | |
| 40 </param> | |
| 41 <param type="boolean" name="plot_perturbation" truevalue="True" falsevalue="False" checked="False" label="Plot perturbation" help="If set to Yes, plot the gene perturbation accumulation vs log2 fold change for every gene on each pathway. Default is No." /> | |
| 42 <param type="text" name="pathwayId" value="" label="Pathway IDs -- default as NULL and analysis all pathway. " help="Special one or more pathway to analysis, input pathway ID at here. For example: 03018, 03320."/> | |
| 43 </section> | |
| 44 | |
| 45 </inputs> | |
| 46 | |
| 47 <outputs> | |
| 48 <data name="sigP_output" format="csv" label="SPIA_enrich_kegg" /> | |
| 49 <data format="pdf" name="SPIA_Perturbation_Plots" label="SPIA_Perturbation_Plots"> | |
| 50 <filter>adv['plot_perturbation'] == True</filter> | |
| 51 </data> | |
| 52 </outputs> | |
| 53 | |
| 54 <tests> | |
| 55 <test> | |
| 56 <param name="input_data" value="SPIA_input.csv" ftype="csv" /> | |
| 57 <output name="sigP_output" file="x.csv" ftype="csv" /> | |
| 58 </test> | |
| 59 </tests> | |
| 60 | |
| 61 <help><![CDATA[ | |
| 62 | |
| 63 .. class:: infomark | |
| 64 | |
| 65 **What it does** | |
| 66 | |
| 67 SPIA (Signaling pathway impact analysis) combines the evidence obtained from the | |
| 68 classical enrichment analysis with a novel type of evidence, which measures the actual | |
| 69 perturbation on a given pathway under a given condition. | |
| 70 | |
| 71 A bootstap procedure is used to assess the significance of the observed total pathway perturbation. | |
| 72 | |
| 73 Then we can calculate a global pathway significance P-value, which combines the enrichment and perturbation P-values. | |
| 74 | |
| 75 SPIA tool analyzes KEGG signaling pathways. | |
| 76 | |
| 77 ------- | |
| 78 | |
| 79 ========= | |
| 80 **Input** | |
| 81 ========= | |
| 82 | |
| 83 Basic options | |
| 84 -------------- | |
| 85 | |
| 86 **Input data** | |
| 87 | |
| 88 The input data is a csv file, which includes the columns `ENTREZ`, `logFC` and `adj.P.Val`. | |
| 89 This file contains all genes of your dataset. | |
| 90 | |
| 91 ====== ========== ======= ========== ========= ==== ======== | |
| 92 logFC AveExpr t P.Value adj.P.Val B ENTREZ | |
| 93 ====== ========== ======= ========== ========= ==== ======== | |
| 94 5.96 6.23 23.9 1.79e-17 9.78e-13 25.4 3491 | |
| 95 5.14 7.49 17.4 1.56e-14 2.84e-10 21.0 2353 | |
| 96 4.15 7.04 16.5 5.15e-14 7.04e-10 20.1 1958 | |
| 97 2.43 9.59 14.1 1.29e-12 1.41e- 8 17.7 1843 | |
| 98 1.53 8.22 11.0 1.69e-10 1.15e- 6 13.6 3725 | |
| 99 1.43 5.33 10.5 4.27e-10 2.42e- 6 12.8 23645 | |
| 100 ====== ========== ======= ========== ========= ==== ======== | |
| 101 | |
| 102 **Organism** | |
| 103 | |
| 104 A three letter word designating the organism of your data. Default is `hsa` (Human). See a full list of options at https://www.genome.jp/kegg/catalog/org_list.html. | |
| 105 | |
| 106 ------ | |
| 107 | |
| 108 Advanced Options | |
| 109 ----------------- | |
| 110 | |
| 111 **P value threshold to select DEgenes** | |
| 112 | |
| 113 Set a threshold value to define differentially expressed genes. Default is 0.05. | |
| 114 | |
| 115 **Bootstrap iterations** | |
| 116 | |
| 117 Number of bootstrap iterations used to compute the `pPERT` value. Should be larger than 100. A recommended value is 2000. | |
| 118 | |
| 119 **Method to combine P values** | |
| 120 | |
| 121 Method used to combine the two types of p-values. If set to 'fisher' it will use Fisher's method. If set to 'norminv' it will use the normal inversion method. | |
| 122 | |
| 123 **Plot perturbation** | |
| 124 | |
| 125 If set to `Yes`, plots the gene perturbation accumulation vs log2 fold change for every gene on each pathway. Default is `No`. | |
| 126 | |
| 127 **Pathway IDs -- default as NULL and analysis all pathway.** | |
| 128 | |
| 129 if you want special one or more pathway to analysis, Input pathway id at here. for example: `03018, 03320`. | |
| 130 | |
| 131 ------ | |
| 132 | |
| 133 ========== | |
| 134 **Output** | |
| 135 ========== | |
| 136 | |
| 137 **CSV file** | |
| 138 | |
| 139 This file contains the ranked pathways and various statistics: | |
| 140 - **Name** is the pathway name; | |
| 141 - **ID** is the pathway ID; | |
| 142 - **pSize** is the number of genes on the pathway; | |
| 143 - **NDE** is the number of DE genes per pathway; | |
| 144 - **tA** is the observed total perturbation accumulation in the pathway; | |
| 145 - **pNDE** is the probability to observe at least NDE genes on the pathway using a hypergeometric model; | |
| 146 - **pPERT** is the probability to observe a total accumulation more extreme than tA only by chance; | |
| 147 - **pG** is the p-value obtained by combining pNDE and pPERT; | |
| 148 - **pGFdr** and **pGFWER** are the False Discovery Rate and Bonferroni adjusted global p-values; | |
| 149 - **Status** gives the direction in which the pathway is perturbed (activated or inhibited). | |
| 150 - **KEGGLINK** gives a web link to the KEGG website that displays the pathway image with the differentially expressed genes highlighted in red. | |
| 151 | |
| 152 **PDF file** | |
| 153 | |
| 154 If the plot argument is set to `Yes`, it will output the plots for the gene perturbation accumulation vs log2 fold change for every gene on each pathway. | |
| 155 | |
| 156 ------ | |
| 157 | |
| 158 Please cite SPIA_ appropriately if you use them. | |
| 159 | |
| 160 .. _SPIA: https://pubmed.ncbi.nlm.nih.gov/18990722/ | |
| 161 | |
| 162 ]]></help> | |
| 163 | |
| 164 <citations> | |
| 165 <citation type="doi">10.1093/bioinformatics/btn577</citation> | |
| 166 </citations> | |
| 167 | |
| 168 </tool> |
