Mercurial > repos > muon-spectroscopy-computational-project > larch_lcf
comparison larch_lcf.py @ 0:f59731986b61 draft
planemo upload for repository https://github.com/MaterialsGalaxy/larch-tools/tree/main/larch_lcf commit 5be486890442dedfb327289d597e1c8110240735
author | muon-spectroscopy-computational-project |
---|---|
date | Tue, 14 Nov 2023 15:35:22 +0000 |
parents | |
children | 6c28339b73f7 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f59731986b61 |
---|---|
1 import json | |
2 import sys | |
3 | |
4 from common import read_group | |
5 | |
6 from larch.math.lincombo_fitting import get_label, lincombo_fit | |
7 from larch.symboltable import Group | |
8 | |
9 import matplotlib | |
10 import matplotlib.pyplot as plt | |
11 | |
12 | |
13 def plot( | |
14 group_to_fit: Group, | |
15 fit_group: Group, | |
16 energy_min: float, | |
17 energy_max: float, | |
18 ): | |
19 formatted_label = "" | |
20 for label, weight in fit_group.weights.items(): | |
21 formatted_label += f"{label}: {weight:.3%}\n" | |
22 | |
23 plt.figure() | |
24 plt.plot( | |
25 group_to_fit.energy, | |
26 group_to_fit.norm, | |
27 label=group_to_fit.filename, | |
28 linewidth=4, | |
29 color="blue", | |
30 ) | |
31 plt.plot( | |
32 fit_group.xdata, | |
33 fit_group.ydata, | |
34 label=formatted_label[:-1], | |
35 linewidth=2, | |
36 color="orange", | |
37 linestyle="--", | |
38 ) | |
39 plt.grid(color="black", linestyle=":", linewidth=1) # show and format grid | |
40 plt.xlim(energy_min, energy_max) | |
41 plt.xlabel("Energy (eV)") | |
42 plt.ylabel("normalised x$\mu$(E)") # noqa: W605 | |
43 plt.legend() | |
44 plt.savefig("plot.png", format="png") | |
45 plt.close("all") | |
46 | |
47 | |
48 def set_label(component_group, label): | |
49 if label is not None: | |
50 component_group.filename = label | |
51 else: | |
52 component_group.filename = get_label(component_group) | |
53 | |
54 | |
55 if __name__ == "__main__": | |
56 # larch imports set this to an interactive backend, so need to change it | |
57 matplotlib.use("Agg") | |
58 prj_file = sys.argv[1] | |
59 input_values = json.load(open(sys.argv[2], "r", encoding="utf-8")) | |
60 | |
61 group_to_fit = read_group(prj_file) | |
62 set_label(group_to_fit, input_values["label"]) | |
63 | |
64 component_groups = [] | |
65 for component in input_values["components"]: | |
66 component_group = read_group(component["component_file"]) | |
67 set_label(component_group, component["label"]) | |
68 component_groups.append(component_group) | |
69 | |
70 fit_group = lincombo_fit(group_to_fit, component_groups) | |
71 print(f"Goodness of fit (rfactor): {fit_group.rfactor:.6%}") | |
72 | |
73 energy_min = input_values["energy_min"] | |
74 energy_max = input_values["energy_max"] | |
75 if input_values["energy_format"] == "relative": | |
76 e0 = group_to_fit.e0 | |
77 if energy_min is not None: | |
78 energy_min += e0 | |
79 if energy_max is not None: | |
80 energy_max += e0 | |
81 | |
82 plot(group_to_fit, fit_group, energy_min, energy_max) |