Mercurial > repos > muon-spectroscopy-computational-project > larch_lcf
view larch_lcf.py @ 0:f59731986b61 draft
planemo upload for repository https://github.com/MaterialsGalaxy/larch-tools/tree/main/larch_lcf commit 5be486890442dedfb327289d597e1c8110240735
author | muon-spectroscopy-computational-project |
---|---|
date | Tue, 14 Nov 2023 15:35:22 +0000 |
parents | |
children | 6c28339b73f7 |
line wrap: on
line source
import json import sys from common import read_group from larch.math.lincombo_fitting import get_label, lincombo_fit from larch.symboltable import Group import matplotlib import matplotlib.pyplot as plt def plot( group_to_fit: Group, fit_group: Group, energy_min: float, energy_max: float, ): formatted_label = "" for label, weight in fit_group.weights.items(): formatted_label += f"{label}: {weight:.3%}\n" plt.figure() plt.plot( group_to_fit.energy, group_to_fit.norm, label=group_to_fit.filename, linewidth=4, color="blue", ) plt.plot( fit_group.xdata, fit_group.ydata, label=formatted_label[:-1], linewidth=2, color="orange", linestyle="--", ) plt.grid(color="black", linestyle=":", linewidth=1) # show and format grid plt.xlim(energy_min, energy_max) plt.xlabel("Energy (eV)") plt.ylabel("normalised x$\mu$(E)") # noqa: W605 plt.legend() plt.savefig("plot.png", format="png") plt.close("all") def set_label(component_group, label): if label is not None: component_group.filename = label else: component_group.filename = get_label(component_group) if __name__ == "__main__": # larch imports set this to an interactive backend, so need to change it matplotlib.use("Agg") prj_file = sys.argv[1] input_values = json.load(open(sys.argv[2], "r", encoding="utf-8")) group_to_fit = read_group(prj_file) set_label(group_to_fit, input_values["label"]) component_groups = [] for component in input_values["components"]: component_group = read_group(component["component_file"]) set_label(component_group, component["label"]) component_groups.append(component_group) fit_group = lincombo_fit(group_to_fit, component_groups) print(f"Goodness of fit (rfactor): {fit_group.rfactor:.6%}") energy_min = input_values["energy_min"] energy_max = input_values["energy_max"] if input_values["energy_format"] == "relative": e0 = group_to_fit.e0 if energy_min is not None: energy_min += e0 if energy_max is not None: energy_max += e0 plot(group_to_fit, fit_group, energy_min, energy_max)