comparison polii.gene.call @ 0:1b5bd3b955ed draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/damidseq_polII_gene_call commit 2e97fdaeafdafe2c63588de17777cd32a798adb1-dirty
author mvdbeek
date Fri, 20 Apr 2018 10:27:20 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:1b5bd3b955ed
1 #!/usr/bin/env Rscript
2
3 # polii.gene.call.r
4 # Copyright © 2014-15, Owen Marshall
5
6 # This program is free software; you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation; either version 2 of the License, or (at
9 # your option) any later version.
10 #
11 # This program is distributed in the hope that it will be useful, but
12 # WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 # General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program; if not, write to the Free Software
18 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
19 # USA
20
21 ### FDR calcs ###
22 # Method based on original perl scripts by Tony Southall (TDS) as published in
23 # Southall et al. (2013). Dev Cell, 26(1), 101–12. doi:10.1016/j.devcel.2013.05.020
24 #
25 # Significant modifications to the original methodology include:
26 # * taking a linear regression of log data rather than trial-and-error curve fitting of non-log data
27 # * using a linear regression for the final intercept value rather than using the average intercept value for all conditions
28 # -- both of these should increase the accuracy of the final FDR value.
29
30 version <- "1.0.2"
31 cat(paste("polii.gene.call v",version,"\n", sep=""))
32
33 library(tools)
34
35 ### Read CLI options
36 input.args <- commandArgs(trailingOnly = TRUE)
37
38 in.files <- vector()
39 read.ops <- function (x) {
40 for (op in x) {
41 if (any(grepl("^--",op))) {
42 op <- gsub("^--","",op)
43 y <- unlist(strsplit(op,"="))
44
45 if (y[1] == "help") {
46 cat(paste("Usage: Rscript polii.gene.call.r --genes.file=[some_genes_file.gff] [list of .gatc.bedgraph or .gatc.gff ratio files to process]\n\n", sep=""))
47
48 cat("Options:\n")
49 for (n in names(op.args)) {
50 cat(paste(" ",n,"=",op.args[[n]],"\n",sep=""))
51 }
52 cat("\n")
53 quit("no",1)
54 }
55
56 if (!is.null(op.args[[ y[1] ]])) {
57 op.args[[ y[1] ]] <<- y[2]
58 } else {
59 cat("Error: Option",y[1],"not recognised ...\n")
60 quit("no",1)
61 }
62 } else {
63 in.files <<- c(in.files,op)
64 }
65 }
66 }
67
68 write.ops <- function () {
69 out.df <- data.frame()
70 for (n in names(op.args)) {
71 v <<- as.character(op.args[[n]])
72 df.line <- data.frame(
73 option=n,
74 value=v
75 )
76 out.df <- rbind(out.df, df.line)
77 }
78 write.table(out.df,"input.args.single.txt",row.names=F)
79 }
80
81 op.args <- list(
82 "genes.file" = "/mnt/data/Genomes/dmel_release/DmR6/DmR6.genes.gff",
83 "iter" = 50000,
84 "fdr" = 0.01
85 )
86
87 read.ops(input.args)
88
89 if (length(in.files) == 0) {
90 cat("Usage: Rscript polii.gene.call.r [list of .gatc.gff ratio files to process]\n\n")
91 quit("no",1)
92 }
93
94 write.ops()
95
96 ### save random seed for future reproducibility
97 dump.random <- runif(1)
98 my.seed <- .Random.seed
99 write.table(my.seed,".randomseed")
100
101 ### read genes file
102 cat("Reading genes data file ...\n")
103 genes.file=op.args[["genes.file"]]
104 genes <- read.table(genes.file, comment.char="#", sep="\t", quote="", fill=T)
105 names(genes) <- c('chr','source','type','start','end','score','strand','c','details')
106
107 # only subset if there is a type termed "gene"
108 if (any(genes$type == 'gene')) {
109 genes <- subset(genes, type=='gene')
110 }
111
112 genes$name <- sapply(genes$details, FUN = function (x) {regmatches(x,gregexpr("(?<=Name=).*?(?=;)", x, perl=T))} )
113 genes <- genes[,c('chr','start','end','strand','name')]
114 genes$chr <- gsub("^chr","",genes$chr,perl=T)
115
116 if (nrow(genes) == 0) {
117 cat("Error: unable to extract gene information from genes file\n\n")
118 quit("no",1)
119 }
120
121 ### functions
122 read.gff <- function (x,name="score") {
123 fn.ext <- file_ext(x)
124
125 if (grepl("gff",ignore.case=T,fn.ext)) {
126 temp.data <- read.table(x,row.names=NULL)
127 if (ncol(temp.data) > 5) {
128 # GFF
129 trim.data <- temp.data[,c(1,4,5,6)]
130 } else {
131 cat("Error: file does not appear to be in GFF format\n\n")
132 quit("no",1)
133 }
134 } else if (grepl("bed",ignore.case=T,fn.ext)) {
135 temp.data <- read.table(x,row.names=NULL,skip=1)
136 if (ncol(temp.data) == 4) {
137 # bedgraph
138 trim.data <- temp.data
139 } else {
140 cat("Error: file does not appear to be in bedGraph format\n\n")
141 quit("no",1)
142 }
143 } else {
144 cat("Error: input file does not appear to be in bedGraph or GFF format ...\n\n")
145 quit("no",1)
146 }
147
148 names(trim.data) <- c("chr","start","end",name)
149
150 trim.data$chr <- gsub("^chr","",trim.data$chr,perl=T)
151
152 return(trim.data)
153 }
154
155 gene.exp <- function (input.df, buffer=0, iter=50000, debug=F) {
156
157 avg.exp <- data.frame(input.df[1,c(4:(length(names(input.df))))])
158 avg <- vector(length=(length(names(input.df)) - 4))
159 avg.exp <- avg.exp[0,]
160
161 ### FDR calcs ###
162 # Method based off perl scripts by Tony Southall (TDS) as published in
163 # Southall et al. (2013). Dev Cell, 26(1), 101–12. doi:10.1016/j.devcel.2013.05.020
164 #
165 # Significant modifications to the original methodology include:
166 # * taking a linear regression of log data rather than trial-and-error curve fitting of non-log data
167 # * using a linear regression for the final intercept value rather than using the average intercept value for all conditions
168 # -- both of these should increase the accuracy of the final FDR value.
169
170 input.len <- length(input.df[,1])
171 frag.samp <- c(1,2,3,4,6,8,10,12,15)
172 thres.samp <- c(0.1,0.2,0.3,0.4,0.5,0.65,0.8,1.0,1.5,2.0)
173
174 rand <- list()
175
176 for (thres in thres.samp) {
177
178 cat(paste(" Calculating FDR for threshold",thres,"\n",sep=" "))
179
180 # init vars
181 for (f in frag.samp) {
182 # List names are, e.g. frag 1, thres 0.2: rand[[thres.1.0.2]]
183 rand[[paste("thres.",f,".",thres,sep="")]] <- 0;
184 }
185
186 for (i in 1:iter) {
187 if (i %% 200 == 0) {cat(paste(" iter",i,"\r"))}
188 # get random sample for different fragment lengths
189
190 rand.samp <- list()
191
192 for (f in frag.samp) {
193 # Using the fourth column as we're only calculating FDR for one sample ...
194 rand.samp[[paste("rand.",f,sep="")]] <- mean(input.df[runif(f,1,input.len),4])
195 }
196
197 # count number of times exp > thres
198 for (f in frag.samp) {
199 if (rand.samp[[paste("rand.",f,sep="")]] > thres) {rand[[paste("thres.",f,".",thres,sep="")]] <- rand[[paste("thres.",f,".",thres,sep="")]] + 1}
200 }
201 }
202 }
203
204 rand.fdr <- list()
205
206 for (thres in thres.samp) {
207 for (f in frag.samp) {
208 rand.fdr[[paste("thres.",f,".",thres,sep="")]] <- rand[[paste("thres.",f,".",thres,sep="")]]/iter
209 }
210 }
211
212 cat("Fitting curves ...\n")
213
214 # curve fit: fdr vs thresholds
215 var.thres <- list()
216
217 for (thres in thres.samp) {
218 for (f in frag.samp) {
219 var.thres[[paste("frags.",f,sep="")]] <- append(var.thres[[paste("frags.",f,sep="")]], rand.fdr[[paste("thres.",f,".",thres,sep="")]])
220 }
221 }
222
223 inf.log.lm <- function (v) {
224 non.inf <- log(v) != -Inf
225 ret <- lm(log(v)[non.inf] ~ thres.samp[non.inf])
226 return(ret)
227 }
228
229 # The relationship is exponential, so we need log data for a linear regression
230 # (in R, linear regression is: y = lm$coefficients[[2]]x + lm$coefficients[[1]] ... )
231 var.lm <- list()
232 for (f in frag.samp) {
233 var.lm[[paste("frags.",f,sep="")]] <- inf.log.lm(var.thres[[paste("frags.",f,sep="")]])
234 }
235
236 # ... and now we do a linear regression on the slopes and intercepts of our previous regressions
237 # (This is the clever bit, and it actually seems to work. The correlation of slope to fragment size is linear ...
238 # By doing this on the slope and intercept, we can now predict the FDR for any number of fragments with any expression.)
239 slope <- vector()
240 for (f in frag.samp) {
241 slope <- append(slope, var.lm[[paste("frags.",f,sep="")]]$coefficients[[2]])
242 }
243
244 # slope regression predicts the average slope
245 slope.lm <- lm(slope ~ frag.samp)
246
247 # TDS used an average intercept value for the intercept, however ...
248 inter <- vector()
249 for (f in frag.samp) {
250 inter <- append(inter, var.lm[[paste("frags.",f,sep="")]]$coefficients[[1]])
251 }
252
253 # ... there's actually quite a bit of variation of the intercept with real data,
254 # so we're going to do a lin regression on the intercept instead.
255 #
256 # (I'm not convinced it's a true linear relationship. But it's close to linear,
257 # and will certainly perform better than taking the mean intercept ...)
258 #
259 # If you're interested, set the debug flag to TRUE and take a look at the plots generated below ...
260 inter.lm <- lm(inter ~ frag.samp)
261
262 if (debug == T) {
263 # plots for debugging/checking
264 plot.debug <- function (y,x,l,name="Debug plot") {
265 plot(y ~ x)
266 abline(l)
267
268 lsum <- summary(l)
269 r2 <- lsum$r.squared
270
271 legend("topleft",legend=r2,bty='n')
272 title(name)
273
274 dev.copy(png,paste(name,".png",sep=""));dev.off()
275 }
276
277 plot.debug(slope,frag.samp,slope.lm,name="correlation of slope")
278 plot.debug(inter,frag.samp,inter.lm,name="correlation of intercepts")
279 }
280
281 # ok, so putting that all together ...
282 fdr <- function (frags, expr) {
283 inter.test <- inter.lm$coefficients[[2]] * frags + inter.lm$coefficients[[1]]
284 slope.test <- slope.lm$coefficients[[2]] * frags + slope.lm$coefficients[[1]]
285
286 fdr.out <- exp(slope.test * expr + inter.test)
287 return(fdr.out)
288 }
289
290 ### Gene expression values ###
291 cat("Calculating gene values ...\n")
292
293 count <- 0
294
295 # unroll chromosomes for speed:
296 for (chromo in unique(genes$chr)) {
297 input.chr <- subset(input.df, chr==chromo)
298 genes.chr <- subset(genes, chr==chromo)
299 for (i in 1:length(genes.chr$name)) {
300 # Roll through each gene
301
302 # Note: the original script calculated expression values for a table of proteins,
303 # here we just limit ourselves to the FDR for the first column past "chr", "start" and "end"
304 # so if you're thinking of looking at chromatin, for example, put PolII as column 4 in your table!
305
306 gene.start <- genes.chr[i,"start"] - buffer
307 gene.end <- genes.chr[i,"end"] + buffer
308
309 gene.start <- ifelse(gene.start < 1, 1, gene.start)
310
311 # Create data frames for all gatc fragments covering current gene
312 exp <- data.frame(input.chr[ (input.chr$start <= gene.end)
313 & (input.chr$end >= gene.start)
314 ,] )
315
316 gatc.num <- length(exp[,1])
317
318 # skip if no gatc fragments cover gene :(
319 if (gatc.num == 0) {next}
320
321 # trim to gene boundaries ...
322 exp$start[1] <- gene.start
323 exp$end[length(exp[,1])] <- gene.end
324
325 # gene length covered by gatc fragments
326 len <- sum(exp$end-exp$start)
327
328 # calculate weighted score for each column (representing different proteins)
329 for (j in 4:length(names(input.chr))) {
330 avg[j] <- (sum((exp$end-exp$start)*exp[j]))/len
331 }
332
333 # make data.frame of averages (to be appended to avg.exp)
334 df <- cbind(avg[1])
335 for (k in 2:length(avg)) {
336 df <- cbind(df,avg[k])
337 }
338 df <- cbind(df,gatc.num)
339
340 # only fdr for first column for now ...
341 gene.fdr <- fdr(gatc.num,avg[4])
342 df <- cbind(df, gene.fdr)
343
344 # append current gene to list
345 avg.exp <- rbind(avg.exp,data.frame(name=as.character(genes.chr[i,"name"]), df))
346 count <- count+1
347 if (count %% 50 == 0) {cat(paste(count,"genes averaged ...\r"))}
348 }
349 }
350
351 avg.exp <- avg.exp[,c(1,5:(length(names(avg.exp))))]
352 names(avg.exp) <- c("name",names(input.df)[c(4:(length(names(input.df))))],"gatc.num","FDR")
353
354 return(avg.exp)
355 }
356
357 for (name in in.files) {
358 cat(paste("\nNow working on",name,"...\n"))
359 bname <- basename(name)
360 fname <- sub("\\..*","",bname,perl=T)
361
362 polii <- read.gff(name,"polii")
363
364 polii.exp <- gene.exp(polii, iter=as.numeric(op.args[["iter"]]))
365
366 out <- subset(polii.exp,FDR < op.args[["fdr"]])
367
368 write.table(polii.exp,paste(fname,"genes.details.csv",sep="."),row.names=F,col.names=T,quote=T,sep="\t")
369 write.table(out$name, paste(fname,"genes",sep="."),row.names=F,col.names=F,quote=F)
370 }
371
372 cat("\nAll done.\n\n")