# HG changeset patch
# User mvdbeek
# Date 1432748423 14400
# Node ID 77de5fc623f90a1f2dc9a34683a576ee8c458e97
planemo upload for repository https://bitbucket.org/drosofff/gedtools/
diff -r 000000000000 -r 77de5fc623f9 mismatch_frequencies.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mismatch_frequencies.py Wed May 27 13:40:23 2015 -0400
@@ -0,0 +1,300 @@
+import pysam, re, string
+import matplotlib.pyplot as plt
+import pandas as pd
+import json
+from collections import defaultdict
+from collections import OrderedDict
+import argparse
+import itertools
+
+class MismatchFrequencies:
+ '''Iterate over a SAM/BAM alignment file, collecting reads with mismatches. One
+ class instance per alignment file. The result_dict attribute will contain a
+ nested dictionary with name, readlength and mismatch count.'''
+ def __init__(self, result_dict={}, alignment_file=None, name="name", minimal_readlength=21,
+ maximal_readlength=21,
+ number_of_allowed_mismatches=1,
+ ignore_5p_nucleotides=0,
+ ignore_3p_nucleotides=0,
+ possible_mismatches = [
+ 'AC', 'AG', 'AT',
+ 'CA', 'CG', 'CT',
+ 'GA', 'GC', 'GT',
+ 'TA', 'TC', 'TG'
+ ]):
+
+ self.result_dict = result_dict
+ self.name = name
+ self.minimal_readlength = minimal_readlength
+ self.maximal_readlength = maximal_readlength
+ self.number_of_allowed_mismatches = number_of_allowed_mismatches
+ self.ignore_5p_nucleotides = ignore_5p_nucleotides
+ self.ignore_3p_nucleotides = ignore_3p_nucleotides
+ self.possible_mismatches = possible_mismatches
+
+ if alignment_file:
+ self.pysam_alignment = pysam.Samfile(alignment_file)
+ self.references = self.pysam_alignment.references #names of fasta reference sequences
+ result_dict[name]=self.get_mismatches(
+ self.pysam_alignment,
+ minimal_readlength,
+ maximal_readlength,
+ possible_mismatches
+ )
+
+ def get_mismatches(self, pysam_alignment, minimal_readlength,
+ maximal_readlength, possible_mismatches):
+ mismatch_dict = defaultdict(int)
+ rec_dd = lambda: defaultdict(rec_dd)
+ len_dict = rec_dd()
+ for alignedread in pysam_alignment:
+ if self.read_is_valid(alignedread, minimal_readlength, maximal_readlength):
+ chromosome = pysam_alignment.getrname(alignedread.rname)
+ try:
+ len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] += 1
+ except TypeError:
+ len_dict[int(alignedread.rlen)][chromosome]['total valid reads'] = 1
+ MD = alignedread.opt('MD')
+ if self.read_has_mismatch(alignedread, self.number_of_allowed_mismatches):
+ (ref_base, mismatch_base)=self.read_to_reference_mismatch(MD, alignedread.seq, alignedread.is_reverse)
+ if ref_base == None:
+ continue
+ else:
+ for i, base in enumerate(ref_base):
+ if not ref_base[i]+mismatch_base[i] in possible_mismatches:
+ continue
+ try:
+ len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] += 1
+ except TypeError:
+ len_dict[int(alignedread.rlen)][chromosome][ref_base[i]+mismatch_base[i]] = 1
+ return len_dict
+
+ def read_is_valid(self, read, min_readlength, max_readlength):
+ '''Filter out reads that are unmatched, too short or
+ too long or that contian insertions'''
+ if read.is_unmapped:
+ return False
+ if read.rlen < min_readlength:
+ return False
+ if read.rlen > max_readlength:
+ return False
+ else:
+ return True
+
+ def read_has_mismatch(self, read, number_of_allowed_mismatches=1):
+ '''keep only reads with one mismatch. Could be simplified'''
+ NM=read.opt('NM')
+ if NM <1: #filter out reads with no mismatch
+ return False
+ if NM >number_of_allowed_mismatches: #filter out reads with more than 1 mismtach
+ return False
+ else:
+ return True
+
+ def mismatch_in_allowed_region(self, readseq, mismatch_position):
+ '''
+ >>> M = MismatchFrequencies()
+ >>> readseq = 'AAAAAA'
+ >>> mismatch_position = 2
+ >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
+ True
+ >>> M = MismatchFrequencies(ignore_3p_nucleotides=2, ignore_5p_nucleotides=2)
+ >>> readseq = 'AAAAAA'
+ >>> mismatch_position = 1
+ >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
+ False
+ >>> readseq = 'AAAAAA'
+ >>> mismatch_position = 4
+ >>> M.mismatch_in_allowed_region(readseq, mismatch_position)
+ False
+ '''
+ mismatch_position+=1 # To compensate for starting the count at 0
+ five_p = self.ignore_5p_nucleotides
+ three_p = self.ignore_3p_nucleotides
+ if any([five_p > 0, three_p > 0]):
+ if any([mismatch_position <= five_p,
+ mismatch_position >= (len(readseq)+1-three_p)]): #Again compensate for starting the count at 0
+ return False
+ else:
+ return True
+ else:
+ return True
+
+ def read_to_reference_mismatch(self, MD, readseq, is_reverse):
+ '''
+ This is where the magic happens. The MD tag contains SNP and indel information,
+ without looking to the genome sequence. This is a typical MD tag: 3C0G2A6.
+ 3 bases of the read align to the reference, followed by a mismatch, where the
+ reference base is C, followed by 10 bases aligned to the reference.
+ suppose a reference 'CTTCGATAATCCTT'
+ ||| || ||||||
+ and a read 'CTTATATTATCCTT'.
+ This situation is represented by the above MD tag.
+ Given MD tag and read sequence this function returns the reference base C, G and A,
+ and the mismatched base A, T, T.
+ >>> M = MismatchFrequencies()
+ >>> MD='3C0G2A7'
+ >>> seq='CTTATATTATCCTT'
+ >>> result=M.read_to_reference_mismatch(MD, seq, is_reverse=False)
+ >>> result[0]=="CGA"
+ True
+ >>> result[1]=="ATT"
+ True
+ >>>
+ '''
+ search=re.finditer('[ATGC]',MD)
+ if '^' in MD:
+ print 'WARNING insertion detected, mismatch calling skipped for this read!!!'
+ return (None, None)
+ start_index=0 # refers to the leading integer of the MD string before an edited base
+ current_position=0 # position of the mismatched nucleotide in the MD tag string
+ mismatch_position=0 # position of edited base in current read
+ reference_base=""
+ mismatched_base=""
+ for result in search:
+ current_position=result.start()
+ mismatch_position=mismatch_position+1+int(MD[start_index:current_position]) #converts the leading characters before an edited base into integers
+ start_index=result.end()
+ reference_base+=MD[result.end()-1]
+ mismatched_base+=readseq[mismatch_position-1]
+ if is_reverse:
+ reference_base=reverseComplement(reference_base)
+ mismatched_base=reverseComplement(mismatched_base)
+ mismatch_position=len(readseq)-mismatch_position-1
+ if mismatched_base=='N':
+ return (None, None)
+ if self.mismatch_in_allowed_region(readseq, mismatch_position):
+ return (reference_base, mismatched_base)
+ else:
+ return (None, None)
+
+def reverseComplement(sequence):
+ '''do a reverse complement of DNA base.
+ >>> reverseComplement('ATGC')=='GCAT'
+ True
+ >>>
+ '''
+ sequence=sequence.upper()
+ complement = string.maketrans('ATCGN', 'TAGCN')
+ return sequence.upper().translate(complement)[::-1]
+
+def barplot(df, library, axes):
+ df.plot(kind='bar', ax=axes, subplots=False,\
+ stacked=False, legend='test',\
+ title='Mismatch frequencies for {0}'.format(library))
+
+def df_to_tab(df, output):
+ df.to_csv(output, sep='\t')
+
+def reduce_result(df, possible_mismatches):
+ '''takes a pandas dataframe with full mismatch details and
+ summarises the results for plotting.'''
+ alignments = df['Alignment_file'].unique()
+ readlengths = df['Readlength'].unique()
+ combinations = itertools.product(*[alignments, readlengths]) #generate all possible combinations of readlength and alignment files
+ reduced_dict = {}
+ frames = []
+ last_column = 3+len(possible_mismatches)
+ for combination in combinations:
+ library_subset = df[df['Alignment_file'] == combination[0]]
+ library_readlength_subset = library_subset[library_subset['Readlength'] == combination[1]]
+ sum_of_library_and_readlength = library_readlength_subset.iloc[:,3:last_column+1].sum()
+ if not reduced_dict.has_key(combination[0]):
+ reduced_dict[combination[0]] = {}
+ reduced_dict[combination[0]][combination[1]] = sum_of_library_and_readlength.to_dict()
+ return reduced_dict
+
+def plot_result(reduced_dict, args):
+ names=reduced_dict.keys()
+ nrows=len(names)/2+1
+ fig = plt.figure(figsize=(16,32))
+ for i,library in enumerate (names):
+ axes=fig.add_subplot(nrows,2,i+1)
+ library_dict=reduced_dict[library]
+ df=pd.DataFrame(library_dict)
+ df.drop(['total aligned reads'], inplace=True)
+ barplot(df, library, axes),
+ axes.set_ylabel('Mismatch count / all valid reads * readlength')
+ fig.savefig(args.output_pdf, format='pdf')
+
+def format_result_dict(result_dict, chromosomes, possible_mismatches):
+ '''Turn nested dictionary into preformatted tab seperated lines'''
+ header = "Reference sequence\tAlignment_file\tReadlength\t" + "\t".join(
+ possible_mismatches) + "\ttotal aligned reads"
+ libraries = result_dict.keys()
+ readlengths = result_dict[libraries[0]].keys()
+ result = []
+ for chromosome in chromosomes:
+ for library in libraries:
+ for readlength in readlengths:
+ line = []
+ line.extend([chromosome, library, readlength])
+ try:
+ line.extend([result_dict[library][readlength][chromosome].get(mismatch, 0) for mismatch in possible_mismatches])
+ line.extend([result_dict[library][readlength][chromosome].get(u'total valid reads', 0)])
+ except KeyError:
+ line.extend([0 for mismatch in possible_mismatches])
+ line.extend([0])
+ result.append(line)
+ df = pd.DataFrame(result, columns=header.split('\t'))
+ last_column=3+len(possible_mismatches)
+ df['mismatches/per aligned nucleotides'] = df.iloc[:,3:last_column].sum(1)/(df.iloc[:,last_column]*df['Readlength'])
+ return df
+
+def setup_MismatchFrequencies(args):
+ resultDict=OrderedDict()
+ kw_list=[{'result_dict' : resultDict,
+ 'alignment_file' :alignment_file,
+ 'name' : name,
+ 'minimal_readlength' : args.min,
+ 'maximal_readlength' : args.max,
+ 'number_of_allowed_mismatches' : args.n_mm,
+ 'ignore_5p_nucleotides' : args.five_p,
+ 'ignore_3p_nucleotides' : args.three_p,
+ 'possible_mismatches' : args.possible_mismatches }
+ for alignment_file, name in zip(args.input, args.name)]
+ return (kw_list, resultDict)
+
+def nested_dict_to_df(dictionary):
+ dictionary = {(outerKey, innerKey): values for outerKey, innerDict in dictionary.iteritems() for innerKey, values in innerDict.iteritems()}
+ df=pd.DataFrame.from_dict(dictionary).transpose()
+ df.index.names = ['Library', 'Readlength']
+ return df
+
+def run_MismatchFrequencies(args):
+ kw_list, resultDict=setup_MismatchFrequencies(args)
+ references = [MismatchFrequencies(**kw_dict).references for kw_dict in kw_list]
+ return (resultDict, references[0])
+
+def main():
+ result_dict, references = run_MismatchFrequencies(args)
+ df = format_result_dict(result_dict, references, args.possible_mismatches)
+ reduced_dict = reduce_result(df, args.possible_mismatches)
+ plot_result(reduced_dict, args)
+ reduced_df = nested_dict_to_df(reduced_dict)
+ df_to_tab(reduced_df, args.output_tab)
+ if not args.expanded_output_tab == None:
+ df_to_tab(df, args.expanded_output_tab)
+ return reduced_dict
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser(description='Produce mismatch statistics for BAM/SAM alignment files.')
+ parser.add_argument('--input', nargs='*', help='Input files in SAM/BAM format')
+ parser.add_argument('--name', nargs='*', help='Name for input file to display in output file. Should have same length as the number of inputs')
+ parser.add_argument('--output_pdf', help='Output filename for graph')
+ parser.add_argument('--output_tab', help='Output filename for table')
+ parser.add_argument('--expanded_output_tab', default=None, help='Output filename for table')
+ parser.add_argument('--possible_mismatches', default=[
+ 'AC', 'AG', 'AT','CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG'
+ ], nargs='+', help='specify mismatches that should be counted for the mismatch frequency. The format is Reference base -> observed base, eg AG for A to G mismatches.')
+ parser.add_argument('--min', '--minimal_readlength', type=int, help='minimum readlength')
+ parser.add_argument('--max', '--maximal_readlength', type=int, help='maximum readlength')
+ parser.add_argument('--n_mm', '--number_allowed_mismatches', type=int, default=1, help='discard reads with more than n mismatches')
+ parser.add_argument('--five_p', '--ignore_5p_nucleotides', type=int, default=0, help='when calculating nucleotide mismatch frequencies ignore the first N nucleotides of the read')
+ parser.add_argument('--three_p', '--ignore_3p_nucleotides', type=int, default=1, help='when calculating nucleotide mismatch frequencies ignore the last N nucleotides of the read')
+ #args = parser.parse_args(['--input', '3mismatches_ago2ip_s2.bam', '3mismatches_ago2ip_ovary.bam','--possible_mismatches','AC','AG', 'CG', 'TG', 'CT','--name', 'Siomi1', 'Siomi2' , '--five_p', '3','--three_p','3','--output_pdf', 'out.pdf', '--output_tab', 'out.tab', '--expanded_output_tab', 'expanded.tab', '--min', '20', '--max', '22'])
+ args = parser.parse_args()
+ reduced_dict = main()
+
+
diff -r 000000000000 -r 77de5fc623f9 mismatch_frequencies.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mismatch_frequencies.xml Wed May 27 13:40:23 2015 -0400
@@ -0,0 +1,89 @@
+
+ Analyze mismatch frequencies in BAM/SAM alignments
+
+ pysam
+ pandas
+ matplotlib
+
+ mismatch_frequencies.py --input
+ #for i in $rep
+ "$i.input_file"
+ #end for
+ --name
+ #for i in $rep
+ "$i.input_file.name"
+ #end for
+ --output_pdf $output_pdf --output_tab $output_tab --min $min_length --max $max_length
+ --n_mm $number_of_mismatches
+ --five_p $five_p
+ --three_p $three_p
+ --expanded_output_tab $expanded_tab
+ --possible_mismatches $possible_mismatches
+
+
+
+
+
+
+
+ len([False for char in value if not char in " AGCTN"]) == 0
+
+
+
+
+
+
+
+
+
+
+
+
+
+ expanded == "expanded"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+.. class:: infomark
+
+
+***What it does***
+
+This tool reconstitues for each aligned read of an alignment file in SAM/BAM format whether
+a mismatch is annotated in the MD tag, and if that is the case counts the identity of the
+mismatch relative to the reference sequence. The output is a PDF document with the calculated
+frequency for each mismatch that occured relative to the total number of valid reads and a table
+with the corresponding values. Read length can be limited to a specific read length, and 5 prime and
+3 prime-most nucleotides of a read can be ignored.
+
+----
+
+.. class:: warningmark
+
+***Warning***
+
+This tool skips all read that have insertions and has been tested only with bowtie and bowtie2
+generated alignment files.
+
+Written by Marius van den Beek, m.vandenbeek at gmail . com
+
+
+
+
diff -r 000000000000 -r 77de5fc623f9 test-data/3mismatches_ago2ip_ovary.bam
Binary file test-data/3mismatches_ago2ip_ovary.bam has changed
diff -r 000000000000 -r 77de5fc623f9 test-data/3mismatches_ago2ip_s2.bam
Binary file test-data/3mismatches_ago2ip_s2.bam has changed
diff -r 000000000000 -r 77de5fc623f9 test-data/mismatch.pdf
Binary file test-data/mismatch.pdf has changed
diff -r 000000000000 -r 77de5fc623f9 test-data/mismatch.tab
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/mismatch.tab Wed May 27 13:40:23 2015 -0400
@@ -0,0 +1,3 @@
+Library Readlength AC AG AT CA CG CT GA GC GT TA TC TG total aligned reads
+3mismatches_ago2ip_ovary.bam 21 380 1214 524 581 278 1127 1032 239 595 483 973 394 138649
+3mismatches_ago2ip_s2.bam 21 48 6503 106 68 46 173 222 144 220 90 232 40 43881
diff -r 000000000000 -r 77de5fc623f9 tool_dependencies.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/tool_dependencies.xml Wed May 27 13:40:23 2015 -0400
@@ -0,0 +1,12 @@
+
+
+
+
+
+
+
+
+
+
+
+