comparison randomForest.R @ 85:94aa63659613 draft

Uploaded
author nicolas
date Fri, 28 Oct 2016 08:48:22 -0400
parents
children
comparison
equal deleted inserted replaced
84:4eea5c2313d2 85:94aa63659613
1 ########################################################
2 #
3 # creation date : 07/01/16
4 # last modification : 25/10/16
5 # author : Dr Nicolas Beaume
6 #
7 ########################################################
8
9 suppressWarnings(suppressMessages(library(randomForest)))
10 ############################ helper functions #######################
11 # optimize
12 optimize <- function(genotype, phenotype, ntree=1000,
13 rangeMtry=seq(ceiling(ncol(genotype)/5),
14 ceiling(ncol(genotype)/3), ceiling(ncol(genotype)/100)),
15 repet=3) {
16 # accuracy over all mtry values
17 acc <- NULL
18 for(mtry in rangeMtry) {
19 # to compute the mean accuracy over repetiotion for the current mtry value
20 tempAcc <- NULL
21 for(i in 1:repet) {
22 # 1/3 of the dataset is used as test set
23 n <- ceiling(nrow(genotype)/3)
24 indexTest <- sample(1:nrow(genotype), size=n)
25 # create training and test set
26 train <- genotype[-indexTest,]
27 test <- genotype[indexTest,]
28 phenoTrain <- phenotype[-indexTest]
29 phenoTest <- phenotype[indexTest]
30 # compute model
31 model <- randomForest(x=train, y=phenoTrain, ntree = ntree, mtry =mtry)
32 # predict on test set and compute accuracy
33 pred <- predict(model, test)
34 tempAcc <- c(tempAcc, r2(phenoTest, pred))
35 }
36 # find mean accuracy for the current mtry value
37 acc <- c(acc, mean(tempAcc))
38 }
39 # return mtry for the best accuracy
40 names(acc) <- rangeMtry
41 bestParam <- which.max(acc)
42 return(rangeMtry[bestParam])
43 }
44
45 # compute r2 by computing the classic formula
46 # compare the sum of square difference from target to prediciton
47 # to the sum of square difference from target to the mean of the target
48 r2 <- function(target, prediction) {
49 sst <- sum((target-mean(target))^2)
50 ssr <- sum((target-prediction)^2)
51 return(1-ssr/sst)
52 }
53 ################################## main function ###########################
54 rfSelection <- function(genotype, phenotype, folds, outFile, evaluation=T, mtry=NULL, ntree=1000) {
55
56 # go for optimization
57 if(is.null(mtry)) {
58 # find best mtry
59 mtry <- seq(ceiling(ncol(genotype)/10), ceiling(ncol(genotype)/3), ceiling(ncol(genotype)/100))
60 mtry <- optimize(genotype=genotype, phenotype=phenotype,
61 ntree = ntree, rangeMtry = mtry)
62 }
63 # evaluation
64 if(evaluation) {
65 prediction <- NULL
66 for(i in 1:length(folds)) {
67 # create training and testing set for the current fold
68 train <- genotype[-folds[[i]],]
69 test <- genotype[folds[[i]],]
70 phenoTrain <- phenotype[-folds[[i]]]
71 # compute model
72 rf <- randomForest(x=train, y=phenoTrain, mtry = mtry, ntree = ntree)
73 # predict and save prediction for the current fold
74 prediction <- c(prediction, list(predict(rf, test)))
75 }
76 # save preductions for all folds to be used for evaluation
77 saveRDS(prediction, file = paste(outFile, ".rds", sep = ""))
78 } else {
79 # just compute the model and save it
80 model <- randomForest(x=genotype, y=phenotype, mtry = mtry, ntree=ntree)
81 saveRDS(model, file = paste(outFile, ".rds", sep = ""))
82 }
83 }
84
85
86 ############################ main #############################
87 # load parameters
88 cmd <- commandArgs(T)
89 source(cmd[1])
90 # load classifier parameters
91 mtry <- as.numeric(mtry)
92 ntree <- as.numeric(ntree)
93 if(mtry == -1) {mtry <- NULL}
94 # check if evaluation is required
95 evaluation <- F
96 if(as.integer(doEvaluation) == 1) {
97 evaluation <- T
98 con = file(folds)
99 folds <- readLines(con = con, n = 1, ok=T)
100 close(con)
101 folds <- readRDS(folds)
102 }
103 # load genotype and phenotype
104 con = file(genotype)
105 genotype <- readLines(con = con, n = 1, ok=T)
106 close(con)
107 genotype <- read.table(genotype, sep="\t", h=T)
108 phenotype <- read.table(phenotype, sep="\t", h=T)[,1]
109 # run !
110 rfSelection(genotype = data.matrix(genotype), phenotype=phenotype,
111 evaluation = evaluation, out = out, folds = folds, mtry = mtry, ntree=ntree)
112 # send the path containing results to galaxy
113 cat(paste(paste(out, ".rds", sep = ""), "\n", sep=""))