comparison svm.R @ 89:c2efdf0c23a1 draft

Uploaded
author nicolas
date Fri, 28 Oct 2016 08:49:43 -0400
parents
children
comparison
equal deleted inserted replaced
88:aef3240b58ac 89:c2efdf0c23a1
1 ########################################################
2 #
3 # creation date : 07/01/16
4 # last modification : 03/07/16
5 # author : Dr Nicolas Beaume
6 # owner : IRRI
7 #
8 ########################################################
9 library("e1071")
10 options(warn=-1)
11 ############################ helper functions #######################
12 # optimize svm parameters
13 optimizeSVM <- function(train, target, kernel="radial", g=NULL, c=NULL, coef=NULL, d=NULL) {
14 # tuning parameters then train
15 model <- NULL
16 if(is.null(g)){g <- 10^(-6:0)}
17 if(is.null(c)){c <- 10^(-1:0)}
18 # optimize parameter for the kernel in use
19 switch(kernel,
20 # sigmoid kernel : need gamma, cost and coef
21 sigmoid={
22 if(is.null(coef)){coef <- 0:3};
23 # optimize then extract best parameters
24 tune <- tune.svm(train, target, gamma = g, cost = 10^(0:2), kernel="sigmoid", coef0 = coef);
25 g <- tune$best.parameters[[1]];
26 c <- tune$best.parameters[[3]];
27 coef <- tune$best.parameters[[2]];
28 # compute model
29 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "sigmoid")},
30 # linear kernel, only cost is required
31 linear={
32 # optimize then extract best parameters
33 tune <- tune.svm(train, target, cost = c, kernel="linear");
34 c <- tune$best.parameters[[1]];
35 # compute model
36 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "linear")},
37 # polynomial kernel, use degree, gamma, cost and coef as parameters
38 polynomial={
39 # optimize and extract best parameters
40 if(is.null(coef)){coef <- 0:3};
41 if(is.null(d)){d <- 0:4};
42 tune <- tune.svm(train, target, gamma = g, cost = c, degree = d, coef0 = coef, kernel="polynomial");
43 d <- tune$best.parameters[[1]];
44 g <- tune$best.parameters[[2]];
45 coef <- tune$best.parameters[[3]];
46 c <- tune$best.parameters[[4]];
47 # compute model
48 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "polynomial", degree = d, coef0 = coef)},
49 # default : radial kernel, use gamma and cost as parameters
50 {
51 # optimize and extract parameters
52 tune <- tune.svm(train, target, gamma = g, cost = c, kernel="radial");
53 g <- tune$best.parameters[[1]];
54 c <- tune$best.parameters[[2]];
55 # compute model
56 model <- svm(x=train, y=target, gamma = g, cost = c, kernel = "radial")}
57 )
58 return(model)
59 }
60 ################################## main function ###########################
61 svmClassifier <- function(genotype, phenotype, evaluation = T, outFile, folds, kernel="radial", g=NULL, c=NULL, coef=NULL, d=NULL) {
62 # optimize classifier if any parameter is NULL
63 switch(kernel,
64 # sigmoid kernel : need gamma, cost and coef
65 sigmoid={
66 if(any(is.null(c(coef, c, g)))){
67 fit <- optimizeSVM(genotype, phenotype, kernel = "sigmoid",
68 g = g, c=c, coef = coef);
69 c <- fit$cost;
70 g <- fit$gamma;
71 coef <- fit$coef0;
72 }
73 },
74 # linear kernel, only cost is required
75 linear={
76 if(is.null(c)){fit <- optimizeSVM(genotype, phenotype, kernel = "linear", c=c);
77 c <- fit$cost;
78 }
79 },
80 # polynomial kernel, use degree, gamma, cost and coef as parameters
81 polynomial={
82 if(any(is.null(c(coef, c, g, d)))){fit <- optimizeSVM(genotype, phenotype, kernel = "polynomial",
83 g = g, c=c, coef = coef, d = d);
84 c <- fit$cost;
85 g <- fit$gamma;
86 coef <- fit$coef0;
87 d <- fit$degree
88 }
89 },
90 # default : radial kernel, use gamma and cost as parameters
91 {if(any(is.null(c(c, g)))){fit <- optimizeSVM(genotype, phenotype, kernel = "radial",
92 g = g, c=c);
93 c <- fit$cost;
94 g <- fit$gamma;
95 }
96 }
97 )
98 # do evaluation
99 if(evaluation) {
100 prediction <- NULL
101 # iterate over folds
102 for(i in 1:length(folds)) {
103 # prepare indexes for training and test
104 test <- folds[[i]]
105 train <- unlist(folds[-i])
106 # compute model
107 svm.fit <- optimizeSVM(train = genotype[train,], target = phenotype[train], kernel=kernel,
108 g=g, c=c, coef=coef, d=d)
109 # predict on test set of the current fold
110 prediction <- c(prediction, list(predict(svm.fit, genotype[test,])))
111 }
112 # save all prediction for further evaluation
113 saveRDS(prediction, file=paste(outFile, ".rds", sep = ""))
114 } else {
115 # compute model and save it
116 switch(kernel,
117 # sigmoid kernel : need gamma, cost and coef
118 sigmoid={
119 model <- svm(x = genotype, y = phenotype, kernel="sigmoid", gamma =g,
120 cost =c, coef0=coef)
121 },
122 # linear kernel, only cost is required
123 linear={
124 model <- svm(x = genotype, y = phenotype, kernel="linear", cost =c)
125 },
126 # polynomial kernel, use degree, gamma, cost and coef as parameters
127 polynomial={
128 model <- svm(x = genotype, y = phenotype, kernel="polynomial", gamma =g, cost =c,
129 coef0=coef, degree =d)
130 },
131 # default : radial kernel, use gamma and cost as parameters
132 { model <- svm(x = genotype, y = phenotype, kernel="radial", gamma =g, cost =c)
133 })
134 saveRDS(model, file=paste(outFile, ".rds", sep = ""))
135 }
136 }
137
138 ############################ main #############################
139 # load argument
140 cmd <- commandArgs(T)
141 source(cmd[1])
142 # check for svm paramater, especially to know if optimization is requiered
143 if(as.numeric(g) == -1) {g <- NULL}
144 if(as.numeric(c) == -1) {c <- NULL}
145 if(as.numeric(coef) == -1) {coef <- NULL}
146 if(as.numeric(d) == -1) {d <- NULL}
147 # check if evaluation is required
148 evaluation <- F
149 if(as.integer(doEvaluation) == 1) {
150 evaluation <- T
151 con = file(folds)
152 folds <- readLines(con = con, n = 1, ok=T)
153 close(con)
154 folds <- readRDS(folds)
155 }
156 # load genotype and phenotype
157 con = file(genotype)
158 genotype <- readLines(con = con, n = 1, ok=T)
159 close(con)
160 genotype <- read.table(genotype, sep="\t", h=T)
161 # phenotype is written as a table (in columns) but it must be sent as a vector for mixed.solve
162 phenotype <- read.table(phenotype, sep="\t", h=T)[,1]
163 # run !
164 svmClassifier(genotype = genotype, phenotype = phenotype,
165 evaluation = evaluation, outFile = out, folds = folds, g=g, c=c, coef=coef, d=d, kernel=kernel)
166 # retunr path of the result file to galaxy
167 cat(paste(paste(out, ".rds", sep = ""), "\n", sep=""))