Mercurial > repos > nicolas > oghma
comparison lasso.R @ 9:dcc10adbe46b draft
Uploaded
| author | nicolas |
|---|---|
| date | Fri, 21 Oct 2016 06:27:31 -0400 |
| parents | |
| children | 2e66da6efc41 |
comparison
equal
deleted
inserted
replaced
| 8:2a613e397874 | 9:dcc10adbe46b |
|---|---|
| 1 ######################################################## | |
| 2 # | |
| 3 # creation date : 08/01/16 | |
| 4 # last modification : 01/09/16 | |
| 5 # author : Dr Nicolas Beaume | |
| 6 # owner : IRRI | |
| 7 # | |
| 8 ######################################################## | |
| 9 log <- file(paste(getwd(), "log_LASSO.txt", sep="/"), open = "wt") | |
| 10 sink(file = log, type="message") | |
| 11 | |
| 12 library(glmnet) | |
| 13 library(methods) | |
| 14 ############################ helper functions ####################### | |
| 15 | |
| 16 createFolds <- function(nbObs, n) { | |
| 17 index <- sample(1:n, size=nbObs, replace = T) | |
| 18 folds <- NULL | |
| 19 for(i in 1:n) { | |
| 20 folds <- c(folds, list(which(index==i))) | |
| 21 } | |
| 22 return(folds) | |
| 23 } | |
| 24 | |
| 25 optimize <- function(genotype, phenotype, alpha=seq(0,1,0.1), nfolds=7) { | |
| 26 acc <- NULL | |
| 27 indexAlpha <- 1 | |
| 28 for(a in alpha) { | |
| 29 curAcc <- NULL | |
| 30 for(i in 1:nfolds) { | |
| 31 n <- ceiling(nrow(genotype)/3) | |
| 32 indexTest <- sample(1:nrow(genotype), size=n) | |
| 33 train <- genotype[-indexTest,] | |
| 34 test <- genotype[indexTest,] | |
| 35 phenoTrain <- phenotype[-indexTest] | |
| 36 phenoTest <- phenotype[indexTest] | |
| 37 cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=a) | |
| 38 model <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=a, lambda = cv$lambda.1se) | |
| 39 pred <- predict(model, test, type = "response") | |
| 40 curAcc <- c(curAcc, r2(phenoTest, pred)) | |
| 41 } | |
| 42 acc <- c(acc, mean(curAcc)) | |
| 43 } | |
| 44 names(acc) <- alpha | |
| 45 return(as.numeric(names(acc)[which.max(acc)])) | |
| 46 } | |
| 47 | |
| 48 r2 <- function(target, prediction) { | |
| 49 sst <- sum((target-mean(target))^2) | |
| 50 ssr <- sum((target-prediction)^2) | |
| 51 return(1-ssr/sst) | |
| 52 } | |
| 53 ################################## main function ########################### | |
| 54 | |
| 55 lassoSelection <- function(genotype, phenotype, evaluation = T, outFile, folds, alpha=NULL) { | |
| 56 # go for optimization | |
| 57 if(is.null(alpha)) { | |
| 58 alpha <- seq(0,1,0.1) | |
| 59 alpha <- optimize(genotype=genotype, phenotype=phenotype, alpha = alpha) | |
| 60 } | |
| 61 # evaluation | |
| 62 if(evaluation) { | |
| 63 prediction <- NULL | |
| 64 for(i in 1:length(folds)) { | |
| 65 train <- genotype[-folds[[i]],] | |
| 66 test <- genotype[folds[[i]],] | |
| 67 phenoTrain <- phenotype[-folds[[i]]] | |
| 68 phenoTest <- phenotype[folds[[i]]] | |
| 69 cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha) | |
| 70 lasso.fit <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha, lambda = cv$lambda.1se) | |
| 71 prediction <- c(prediction, list(predict(lasso.fit, test, type = "response")[,1])) | |
| 72 } | |
| 73 saveRDS(prediction, file=paste(outFile,".rds", sep="")) | |
| 74 # just create a model | |
| 75 } else { | |
| 76 cv <- cv.glmnet(x=genotype, y=phenotype, alpha=alpha) | |
| 77 model <- glmnet(x=genotype, y=phenotype, alpha=alpha, lambda=cv$lambda.1se) | |
| 78 saveRDS(model, file = paste(outFile, ".rds", sep = "")) | |
| 79 } | |
| 80 } | |
| 81 | |
| 82 ############################ main ############################# | |
| 83 # running from terminal (supposing the OghmaGalaxy/bin directory is in your path) : | |
| 84 # lasso.sh -i path_to_genotype -p phenotype_file -e -f fold_file -o out_file | |
| 85 ## -i : path to the file that contains the genotypes, must be a .rda file (as outputed by loadGenotype). | |
| 86 # please note that the table must be called "encoded" when your datafile is saved into .rda (automatic if encoded.R was used) | |
| 87 | |
| 88 ## -p : file that contains the phenotype must be a .rda file (as outputed by loadGenotype.R). | |
| 89 # please note that the table must be called "phenotype" when your datafile is saved into .rda (automatic if loadGenotype.R was used) | |
| 90 | |
| 91 ## -e : do evaluation instead of producing a model | |
| 92 | |
| 93 ## -f : index of the folds to which belong each individual | |
| 94 # please note that the list must be called "folds" (automatic if folds.R was used) | |
| 95 | |
| 96 ## -o : path to the output folder and generic name of the analysis. The extension related to each type of | |
| 97 # files are automatically added | |
| 98 | |
| 99 cmd <- commandArgs(T) | |
| 100 source(cmd[1]) | |
| 101 # check if evaluation is required | |
| 102 evaluation <- F | |
| 103 if(as.integer(doEvaluation) == 1) { | |
| 104 evaluation <- T | |
| 105 con = file(folds) | |
| 106 folds <- readLines(con = con, n = 1, ok=T) | |
| 107 close(con) | |
| 108 folds <- readRDS(folds) | |
| 109 } | |
| 110 # load classifier parameters | |
| 111 if(as.numeric(alpha) == -1) {alpha <- NULL} | |
| 112 # load genotype and phenotype | |
| 113 con = file(genotype) | |
| 114 genotype <- readLines(con = con, n = 1, ok=T) | |
| 115 close(con) | |
| 116 genotype <- read.table(genotype, sep="\t", h=T) | |
| 117 # phenotype is written as a table (in columns) but it must be sent as a vector for mixed.solve | |
| 118 phenotype <- read.table(phenotype, sep="\t", h=T)[,1] | |
| 119 # run ! | |
| 120 lassoSelection(genotype = data.matrix(genotype), phenotype = phenotype, | |
| 121 evaluation = evaluation, outFile = out, folds = folds, alpha = alpha) | |
| 122 cat(paste(paste(out, ".rds", sep = ""), "\n", sep="")) |
