comparison lasso.R @ 9:dcc10adbe46b draft

Uploaded
author nicolas
date Fri, 21 Oct 2016 06:27:31 -0400
parents
children 2e66da6efc41
comparison
equal deleted inserted replaced
8:2a613e397874 9:dcc10adbe46b
1 ########################################################
2 #
3 # creation date : 08/01/16
4 # last modification : 01/09/16
5 # author : Dr Nicolas Beaume
6 # owner : IRRI
7 #
8 ########################################################
9 log <- file(paste(getwd(), "log_LASSO.txt", sep="/"), open = "wt")
10 sink(file = log, type="message")
11
12 library(glmnet)
13 library(methods)
14 ############################ helper functions #######################
15
16 createFolds <- function(nbObs, n) {
17 index <- sample(1:n, size=nbObs, replace = T)
18 folds <- NULL
19 for(i in 1:n) {
20 folds <- c(folds, list(which(index==i)))
21 }
22 return(folds)
23 }
24
25 optimize <- function(genotype, phenotype, alpha=seq(0,1,0.1), nfolds=7) {
26 acc <- NULL
27 indexAlpha <- 1
28 for(a in alpha) {
29 curAcc <- NULL
30 for(i in 1:nfolds) {
31 n <- ceiling(nrow(genotype)/3)
32 indexTest <- sample(1:nrow(genotype), size=n)
33 train <- genotype[-indexTest,]
34 test <- genotype[indexTest,]
35 phenoTrain <- phenotype[-indexTest]
36 phenoTest <- phenotype[indexTest]
37 cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=a)
38 model <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=a, lambda = cv$lambda.1se)
39 pred <- predict(model, test, type = "response")
40 curAcc <- c(curAcc, r2(phenoTest, pred))
41 }
42 acc <- c(acc, mean(curAcc))
43 }
44 names(acc) <- alpha
45 return(as.numeric(names(acc)[which.max(acc)]))
46 }
47
48 r2 <- function(target, prediction) {
49 sst <- sum((target-mean(target))^2)
50 ssr <- sum((target-prediction)^2)
51 return(1-ssr/sst)
52 }
53 ################################## main function ###########################
54
55 lassoSelection <- function(genotype, phenotype, evaluation = T, outFile, folds, alpha=NULL) {
56 # go for optimization
57 if(is.null(alpha)) {
58 alpha <- seq(0,1,0.1)
59 alpha <- optimize(genotype=genotype, phenotype=phenotype, alpha = alpha)
60 }
61 # evaluation
62 if(evaluation) {
63 prediction <- NULL
64 for(i in 1:length(folds)) {
65 train <- genotype[-folds[[i]],]
66 test <- genotype[folds[[i]],]
67 phenoTrain <- phenotype[-folds[[i]]]
68 phenoTest <- phenotype[folds[[i]]]
69 cv <- cv.glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha)
70 lasso.fit <- glmnet(x=as.matrix(train), y=phenoTrain, alpha=alpha, lambda = cv$lambda.1se)
71 prediction <- c(prediction, list(predict(lasso.fit, test, type = "response")[,1]))
72 }
73 saveRDS(prediction, file=paste(outFile,".rds", sep=""))
74 # just create a model
75 } else {
76 cv <- cv.glmnet(x=genotype, y=phenotype, alpha=alpha)
77 model <- glmnet(x=genotype, y=phenotype, alpha=alpha, lambda=cv$lambda.1se)
78 saveRDS(model, file = paste(outFile, ".rds", sep = ""))
79 }
80 }
81
82 ############################ main #############################
83 # running from terminal (supposing the OghmaGalaxy/bin directory is in your path) :
84 # lasso.sh -i path_to_genotype -p phenotype_file -e -f fold_file -o out_file
85 ## -i : path to the file that contains the genotypes, must be a .rda file (as outputed by loadGenotype).
86 # please note that the table must be called "encoded" when your datafile is saved into .rda (automatic if encoded.R was used)
87
88 ## -p : file that contains the phenotype must be a .rda file (as outputed by loadGenotype.R).
89 # please note that the table must be called "phenotype" when your datafile is saved into .rda (automatic if loadGenotype.R was used)
90
91 ## -e : do evaluation instead of producing a model
92
93 ## -f : index of the folds to which belong each individual
94 # please note that the list must be called "folds" (automatic if folds.R was used)
95
96 ## -o : path to the output folder and generic name of the analysis. The extension related to each type of
97 # files are automatically added
98
99 cmd <- commandArgs(T)
100 source(cmd[1])
101 # check if evaluation is required
102 evaluation <- F
103 if(as.integer(doEvaluation) == 1) {
104 evaluation <- T
105 con = file(folds)
106 folds <- readLines(con = con, n = 1, ok=T)
107 close(con)
108 folds <- readRDS(folds)
109 }
110 # load classifier parameters
111 if(as.numeric(alpha) == -1) {alpha <- NULL}
112 # load genotype and phenotype
113 con = file(genotype)
114 genotype <- readLines(con = con, n = 1, ok=T)
115 close(con)
116 genotype <- read.table(genotype, sep="\t", h=T)
117 # phenotype is written as a table (in columns) but it must be sent as a vector for mixed.solve
118 phenotype <- read.table(phenotype, sep="\t", h=T)[,1]
119 # run !
120 lassoSelection(genotype = data.matrix(genotype), phenotype = phenotype,
121 evaluation = evaluation, outFile = out, folds = folds, alpha = alpha)
122 cat(paste(paste(out, ".rds", sep = ""), "\n", sep=""))