comparison prediction.R @ 22:f0d89ff35ad2 draft

Uploaded
author nicolas
date Fri, 21 Oct 2016 10:35:13 -0400
parents
children 8112bc642858
comparison
equal deleted inserted replaced
21:1efd84f03444 22:f0d89ff35ad2
1 ########################################################
2 #
3 # creation date : 26/01/16
4 # last modification : 02/06/16
5 # author : Dr Nicolas Beaume
6 # owner : IRRI
7 #
8 ########################################################
9 log <- file(paste(getwd(), "log_prediction.txt", sep="/"), open = "wt")
10 sink(file = log, type="message")
11
12 library(rrBLUP)
13 library(randomForest)
14 library(e1071)
15 library(glmnet)
16 library(methods)
17 ############################ helper functions #######################
18
19 ################################## main function ###########################
20
21
22 ############################ main #############################
23 # running from terminal (supposing the OghmaGalaxy/bin directory is in your path) :
24 # predict.sh -i genotype_file -m model_file -n name -o path_to_result_directory
25 ## -i : path to the file that contains the genotypes.
26 # please note that the table must be called "genotype" when your datafile is saved into .rda (automatic if encode.R is used)
27
28 ## -m : model build through any methods
29 # please note that the table must be called "model" when your datafile is saved into .rda
30 # (automatic if classifiers from this pipeline were used)
31
32 ## -n : prefix of the names of all result files
33
34 ## -o : path to the directory where the evaluation results are stored.
35
36 classifierNames <- c("list", "randomForest", "svm", "glmnet")
37 cmd <- commandArgs(trailingOnly = T)
38 source(cmd[1])
39 # load data
40 con = file(genotype)
41 genotype <- readLines(con = con, n = 1, ok=T)
42 close(con)
43 genotype <- read.table(genotype, sep="\t", h=T)
44 con = file(model)
45 model <- readLines(con = con, n = 1, ok=T)
46 close(con)
47 model <- readRDS(model)
48 # check if the classifier name is valid
49 if(all(is.na(match(class(model), classifierNames)))) {
50 stop(paste(class(model), "is not recognized as a valid model. Valid models are : ", classifierNames))
51 }
52 # run prediction according to the classifier
53 if(any(class(model) == "list")) {
54 predictions <- as.matrix(genotype) %*% as.matrix(model$u)
55 predictions <- predictions[,1]+model$beta
56 predictions <- data.frame(lines=rownames(genotype), predictions=predictions)
57 } else if(any(class(model) == "glmnet")) {
58 predictions <- predict(model, as.matrix(genotype), type = "response")
59 predictions <- data.frame(lines=rownames(genotype), predictions=predictions)
60 } else {
61 predictions <- predict(model, genotype)
62 predictions <- data.frame(lines=names(predictions), predictions=predictions)
63 }
64 # save results
65 write.table(predictions, file=out, sep="\t", row.names = F)
66