0
|
1 #!/usr/bin/perl
|
|
2 # ITSx ITS Extractor
|
|
3 $app_title = "ITSx -- Identifies ITS sequences and extracts the ITS region";
|
|
4 $app_author = "Johan Bengtsson-Palme et al., University of Gothenburg";
|
|
5 $app_version = "1.0.11";
|
|
6 $app_message = "";
|
|
7 # ----------------------------------------------------------------- #
|
|
8
|
|
9 # License information
|
|
10 $license =
|
|
11 " ITSx - ITS Extractor -- Identifies ITS sequences and extracts the ITS region\
|
|
12 Copyright (C) 2012-2014 Johan Bengtsson-Palme et al.\
|
|
13 \
|
|
14 This program is free software: you can redistribute it and/or modify\
|
|
15 it under the terms of the GNU General Public License as published by\
|
|
16 the Free Software Foundation, either version 3 of the License, or\
|
|
17 (at your option) any later version.\
|
|
18 \
|
|
19 This program is distributed in the hope that it will be useful,\
|
|
20 but WITHOUT ANY WARRANTY; without even the implied warranty of\
|
|
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\
|
|
22 GNU General Public License for more details.\
|
|
23 \
|
|
24 You should have received a copy of the GNU General Public License\
|
|
25 along with this program, in a file called 'license.txt'\
|
|
26 If not, see: http://www.gnu.org/licenses/.\
|
|
27 ";
|
|
28
|
|
29 ## BUGS:
|
|
30 $bugs = "New features in this version ($app_version):\
|
|
31 - None\
|
|
32 \
|
|
33 Fixed bugs in this version ($app_version):\
|
|
34 - Fixed a bug causing newline characters to be occasionally skipped in the 'its1.full_and_partial.fasta' FASTA output file when the '--anchor' option was used\
|
|
35 \
|
|
36 Known bugs in this version ($app_version):\
|
|
37 - None\
|
|
38 ";
|
|
39
|
|
40 ## OPTIONS:
|
|
41 $options = "\
|
|
42 -i {file} : DNA FASTA input file to investigate\
|
|
43 -o {file} : Base for the names of output file(s)\
|
|
44 -p {directory} : A path to a directory of HMM-profile collections representing ITS conserved regions, default is in the same directory as ITSx itself\
|
|
45 --date {T or F} : Adds a date and time stamp to the output directory, off (F) by default\
|
|
46 --reset {T or F} : Re-creates the HMM-database before ITSx is run, off (F) by default\
|
|
47
|
|
48 Sequence selection options:\
|
|
49 -t {character code} : Profile set to use for the search, see the User's Guide (comma-separated), default is all\
|
|
50 -E {value} : Domain E-value cutoff for a sequence to be included in the output, default = 1e-5\
|
|
51 -S {value} : Domain score cutoff for a sequence to be included in the output, default = 0\
|
|
52 -N {value} : The minimal number of domains that must match a sequence before it is included, default = 2\
|
|
53 --selection_priority {sum, domains, eval, score} : Selects what will be of highest priority when determining the origin of the sequence, default is sum\
|
|
54 --search_eval {value} : The E-value cutoff used in the HMMER search, high numbers may slow down the process, cannot be used with the --search_score option, default is 0.01\
|
|
55 --search_score {value} : The score cutoff used in the HMMER search, low numbers may slow down the process, cannot be used with the --search_eval option, default is to used E-value cutoff, not score\
|
|
56 --allow_single_domain {e-value,score or F} : Allow inclusion of sequences that only find a single domain, given that they meet the given E-value and score thresholds, on with parameters 1e-9,0 by default\
|
|
57 --allow_reorder {T or F} : Allows profiles to be in the wrong order on extracted sequences, off (F) by default\
|
|
58 --complement {T or F} : Checks both DNA strands against the database, creating reverse complements, on (T) by default\
|
|
59 --cpu {value} : the number of CPU threads to use, default is 1\
|
|
60 --multi_thread {T or F} : Multi-thread the HMMER-search, on (T) if number of CPUs (--cpu option > 1), else off (F) by default\
|
|
61 --heuristics {T or F} : Selects whether to use HMMER's heuristic filtering, off (F) by default\
|
|
62
|
|
63 Output options:\
|
|
64 --summary {T or F} : Summary of results output, on (T) by default\
|
|
65 --graphical {T or F} : 'Graphical' output, on (T) by default\
|
|
66 --fasta {T or F} : FASTA-format output of extracted ITS sequences, on (T) by default\
|
|
67 --preserve {T or F} : Preserve sequence headers in input file instead of printing out ITSx headers, off (F) by default\
|
|
68 --save_regions {SSU,ITS1,5.8S,ITS2,LSU,all,none} : A comma separated list of regions to output separate FASTA files for, 'ITS1,ITS2' by default\
|
|
69 --anchor {integer or HMM} : Saves an additional number of bases before and after each extracted region. If set to 'HMM' all bases matching the corresponding HMM will be output, default = 0\
|
|
70 --only_full {T or F} : If true, output is limited to full-length regions, off (F) by default\
|
|
71 --partial {integer} : Saves additional FASTA-files for full and partial ITS sequences longer than the specified cutoff, default = 0 (off)\
|
|
72 --concat {T or F} : Saves a FASTA-file with concatenated ITS sequences (with 5.8S removed), off (F) by default\
|
|
73 --minlen {integer} : Minimum length the ITS regions must be to be outputted in the concatenated file (see above), default = 0\
|
|
74 --positions {T or F} : Table format output containing the positions ITS sequences were found in, on (T) by default\
|
|
75 --table {T or F} : Table format output of sequences containing probable ITS sequences, off (F) by default\
|
|
76 --not_found {T or F} : Saves a list of non-found entries, on (T) by default\
|
|
77 --detailed_results {T or F} : Saves a tab-separated list of all results, off (F) by default\
|
|
78 --truncate {T or F} : Truncates the FASTA output to only contain the actual ITS sequences found, on (T) by default\
|
|
79 --silent {T or F} : Supresses printing progress info to stderr, off (F) by default\
|
|
80 --graph_scale {value} : Sets the scale of the graph output, if value is zero, a percentage view is shown, default = 0\
|
|
81 --save_raw {T or F} : Saves all raw data for searches etc. instead of removing it on finish, off (F) by default\
|
|
82
|
|
83 -h : displays this help message\
|
|
84 --help : displays this help message\
|
|
85 --bugs : displays the bug fixes and known bugs in this version of ITSx\
|
|
86 --license : displays licensing information\
|
|
87 ";
|
|
88
|
|
89
|
|
90 ## Print title message
|
|
91 print STDERR "$app_title\nby $app_author\nVersion: $app_version\n$app_message";
|
|
92 print STDERR "-----------------------------------------------------------------\n";
|
|
93
|
|
94 ## Setup default variable values
|
|
95 use List::Util qw(first max maxstr min minstr reduce shuffle sum);
|
|
96
|
|
97 $bindir = $0;
|
|
98 $bindir =~ s/_x//;
|
|
99 $input = "";
|
|
100 $output = "ITSx_out";
|
|
101 $hmmscan = "";
|
|
102 $profileDB = "$bindir\_db/HMMs";
|
|
103 $type = "all";
|
|
104 $E = 1e-5;
|
|
105 $S = 0;
|
|
106 $N = 2;
|
|
107 $priority = "sum";
|
|
108 $search_eval = 0.01;
|
|
109 $search_score = "";
|
|
110 $allow_single_E = 1e-9;
|
|
111 $allow_single_score = 0;
|
|
112 #$allow_single_E = -1; # Turns off single-domain matching by E-value
|
|
113 #$allow_single_score = 0; # Turns off single-domain matching by score
|
|
114 $allow_reorder = 0;
|
|
115 $complement = 1;
|
|
116 $cpu = 1;
|
|
117 $multi_thread = "unset";
|
|
118 $heuristics = 0;
|
|
119 $out_sum = 1;
|
|
120 $out_graph = 1;
|
|
121 $out_fasta = 1;
|
|
122 $out_preserve = 0;
|
|
123 $out_ssu = 0;
|
|
124 $out_its1 = 1;
|
|
125 $out_its2 = 1;
|
|
126 $out_58S = 0;
|
|
127 $out_lsu = 0;
|
|
128 $out_pos = 1;
|
|
129 $out_table = 0;
|
|
130 $out_not = 1;
|
|
131 $out_date = 0;
|
|
132 $out_joined = 0;
|
|
133 $out_results = 0;
|
|
134 $out_partial = 0;
|
|
135 $out_concat = 0;
|
|
136 $concat_minlen = 0;
|
|
137 $truncate = 1;
|
|
138 $anchor = 0;
|
|
139 $only_full = 0;
|
|
140 $graph_scale = 0;
|
|
141 $debug = 0;
|
|
142 $reset = 0;
|
|
143
|
|
144 ## Read command-line options
|
|
145 for ($i = 0; $i <= scalar(@ARGV); $i++) { # Goes through the list of arguments
|
|
146 $arg = @ARGV[$i]; # Stores the current argument in $arg
|
|
147
|
|
148 if ($arg eq "-i") { # Read input files from -i flag
|
|
149 $i++;
|
|
150 $input = @ARGV[$i];
|
|
151 }
|
|
152 if ($arg eq "-o") { # Read output files from -o flag
|
|
153 $i++;
|
|
154 $output = @ARGV[$i];
|
|
155 }
|
|
156 if ($arg eq "-p") { # Read profile database from -p flag
|
|
157 $i++;
|
|
158 $profileDB = @ARGV[$i];
|
|
159 }
|
|
160 if ($arg eq "--hmmscan") { # Read pre-computed hmmscan output file from --hmmscan flag ('undocumented' feature)
|
|
161 $i++;
|
|
162 $hmmscan = @ARGV[$i];
|
|
163 }
|
|
164 if ($arg eq "--date") { # Determine whether or not to add a date stamp based on the --date flag
|
|
165 $i++;
|
|
166 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0"
|
|
167 $out_date = 0;
|
|
168 } else {
|
|
169 $out_date = 1;
|
|
170 }
|
|
171 }
|
|
172 if ($arg eq "--reset") { # Reset HMM database?
|
|
173 $i++;
|
|
174 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0"
|
|
175 $reset = 0;
|
|
176 } else {
|
|
177 $reset = 1;
|
|
178 }
|
|
179 }
|
|
180
|
|
181 if ($arg eq "-t") { # Select what types of ITSs to look for using the -t flag
|
|
182 $i++;
|
|
183 $type = @ARGV[$i];
|
|
184 }
|
|
185 if ($arg eq "-E") { # Set the E-value cutoff using the -E flag
|
|
186 $i++;
|
|
187 $E = @ARGV[$i];
|
|
188 }
|
|
189 if ($arg eq "-S") { # Set the score cutoff using the -S flag
|
|
190 $i++;
|
|
191 $S = @ARGV[$i];
|
|
192 }
|
|
193 if ($arg eq "-N") { # Set the number of found domains cutoff using the -N flag
|
|
194 $i++;
|
|
195 $N = @ARGV[$i];
|
|
196 }
|
|
197 if ($arg eq "--selection_priority") { # Set how to order the ITS types using the --selection_priority flag
|
|
198 $i++;
|
|
199 $priority = @ARGV[$i];
|
|
200 }
|
|
201 if ($arg eq "--search_eval") { # Set the E-value cutoff for the HMMER search using the --search_eval flag
|
|
202 $i++;
|
|
203 $search_eval = @ARGV[$i];
|
|
204 $search_score = ""; # Turns off score cutoff
|
|
205 }
|
|
206 if ($arg eq "--search_score") { # Set the score cutoff for the HMMER search using the --search_score flag
|
|
207 $i++;
|
|
208 $search_score = @ARGV[$i];
|
|
209 $search_eval = ""; # Turns off E-value cutoff
|
|
210 }
|
|
211 if ($arg eq "--allow_single_domain") { # Determine whether or not to allow single domain matches based on the --allow_single_domain flag
|
|
212 $i++;
|
|
213 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0"
|
|
214 $allow_single_E = -1; # Turns off single-domain matching by E-value
|
|
215 $allow_single_score = 0; # Turns off single-domain matching by score
|
|
216 } else {
|
|
217 ($allow_single_E,$allow_single_score) = split(',',@ARGV[$i]); # Turns on single-domain matching, assigning the first given value as the E-value cutoff, and the second as score cutoff
|
|
218 }
|
|
219 }
|
|
220 if ($arg eq "--allow_reorder") { # Determine whether or not to allow the domains to be in the wrong order based on the --allow_reorder flag
|
|
221 $i++;
|
|
222 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
223 $allow_reorder = 1;
|
|
224 } else {
|
|
225 $allow_reorder = 0;
|
|
226 }
|
|
227 }
|
|
228 if ($arg eq "--complement") { # Determine whether or not to scan the complementary strand of the input file based on the --complement flag
|
|
229 $i++;
|
|
230 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
231 $complement = 1;
|
|
232 } else {
|
|
233 $complement = 0;
|
|
234 }
|
|
235 }
|
|
236 if ($arg eq "--cpu") { # Set the number of CPUs to use based on the --cpu flag
|
|
237 $i++;
|
|
238 $cpu = @ARGV[$i];
|
|
239 }
|
|
240 if ($arg eq "--multi_thread") { # Determine whether or not to multi-thread the HMMER step based on the --multi_thread flag
|
|
241 $i++;
|
|
242 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
243 $multi_thread = 1;
|
|
244 } else {
|
|
245 $multi_thread = 0;
|
|
246 }
|
|
247 }
|
|
248 if ($arg eq "--heuristics") { # Determine whether or not to use HMMER's heuristic filtering based on the --heuristics flag
|
|
249 $i++;
|
|
250 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
251 $heuristics = 1;
|
|
252 } else {
|
|
253 $heuristics = 0;
|
|
254 }
|
|
255 }
|
|
256
|
|
257 if ($arg eq "--summary") { # Determine whether or not to output a summary based on the --summary flag
|
|
258 $i++;
|
|
259 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
260 $out_sum = 1;
|
|
261 } else {
|
|
262 $out_sum = 0;
|
|
263 }
|
|
264 }
|
|
265 if ($arg eq "--graphical") { # Determine whether or not to output a graphical representation of matches based on the --graphical flag
|
|
266 $i++;
|
|
267 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
268 $out_graph = 1;
|
|
269 } else {
|
|
270 $out_graph = 0;
|
|
271 }
|
|
272 }
|
|
273 if ($arg eq "--detailed_results") { # Determine whether or not to output a detailed results list, based on the --detailed_results flag
|
|
274 $i++;
|
|
275 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
276 $out_results = 1;
|
|
277 } else {
|
|
278 $out_results = 0;
|
|
279 }
|
|
280 }
|
|
281 if ($arg eq "--partial") { # Set the full-and-partial cutoff
|
|
282 $i++;
|
|
283 $out_partial = @ARGV[$i];
|
|
284 }
|
|
285 if ($arg eq "--anchor") { # Set the length of the sequence "anchors"
|
|
286 $i++;
|
|
287 $anchor = @ARGV[$i];
|
|
288 }
|
|
289 if ($arg eq "--only_full") { # Output only full-length regions
|
|
290 $i++;
|
|
291 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
292 $only_full = 1;
|
|
293 } else {
|
|
294 $only_full = 0;
|
|
295 }
|
|
296 }
|
|
297 if ($arg eq "--save_regions") { # Determine which regions to output FASTA files for based on the --save_regions flag
|
|
298 $i++;
|
|
299 @save_regions = split(',',uc(@ARGV[$i]));
|
|
300 $out_ssu = 0;
|
|
301 $out_its1 = 0;
|
|
302 $out_its2 = 0;
|
|
303 $out_58S = 0;
|
|
304 $out_lsu = 0;
|
|
305 foreach $save_region (@save_regions) {
|
|
306 if ($save_region eq "SSU") {
|
|
307 $out_ssu = 1;
|
|
308 }
|
|
309 if ($save_region eq "ITS1") {
|
|
310 $out_its1 = 1;
|
|
311 }
|
|
312 if ($save_region eq "5.8S") {
|
|
313 $out_58S = 1;
|
|
314 }
|
|
315 if ($save_region eq "ITS2") {
|
|
316 $out_its2 = 1;
|
|
317 }
|
|
318 if ($save_region eq "LSU") {
|
|
319 $out_lsu = 1;
|
|
320 }
|
|
321 if ($save_region eq "ALL") {
|
|
322 $out_ssu = 1;
|
|
323 $out_its1 = 1;
|
|
324 $out_its2 = 1;
|
|
325 $out_58S = 1;
|
|
326 $out_lsu = 1;
|
|
327 }
|
|
328 if ($save_region eq "NONE") {
|
|
329 $out_ssu = 0;
|
|
330 $out_its1 = 0;
|
|
331 $out_its2 = 0;
|
|
332 $out_58S = 0;
|
|
333 $out_lsu = 0;
|
|
334 }
|
|
335 }
|
|
336 }
|
|
337 if ($arg eq "--positions") { # Determine whether or not to output a positions file based on the --positions flag
|
|
338 $i++;
|
|
339 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
340 $out_pos = 1;
|
|
341 } else {
|
|
342 $out_pos = 0;
|
|
343 }
|
|
344 }
|
|
345 if ($arg eq "--concat") { # Determine whether or not to output a concatednated ITS1 + ITS2 file
|
|
346 $i++;
|
|
347 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
348 $out_concat = 1;
|
|
349 } else {
|
|
350 $out_concat = 0;
|
|
351 }
|
|
352 }
|
|
353 if ($arg eq "--minlen") { # Set the min length of the combined ITS1 and ITS2 sequences for concatenation
|
|
354 $i++;
|
|
355 $concat_minlen = @ARGV[$i];
|
|
356 }
|
|
357 if ($arg eq "--fasta") { # Determine whether or not to output FASTA-files based on the --fasta flag
|
|
358 $i++;
|
|
359 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
360 $out_fasta = 1;
|
|
361 } else {
|
|
362 $out_fasta = 0;
|
|
363 }
|
|
364 }
|
|
365 if ($arg eq "--preserve") { # Determine whether or not to preserve FASTA-headers based on the --preserve flag
|
|
366 $i++;
|
|
367 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
368 $out_preserve = 1;
|
|
369 } else {
|
|
370 $out_preserve = 0;
|
|
371 }
|
|
372 }
|
|
373 if ($arg eq "--joined") { # Determine whether or not to output a FASTA-file containing ALL sorts of output sequences (for debugging)
|
|
374 $i++;
|
|
375 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
376 $out_joined = 1;
|
|
377 } else {
|
|
378 $out_joined = 0;
|
|
379 }
|
|
380 }
|
|
381 if ($arg eq "--table") { # Determine whether or not to output tables of all potential matches based on the --table flag
|
|
382 $i++;
|
|
383 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
384 $out_table = 1;
|
|
385 } else {
|
|
386 $out_table = 0;
|
|
387 }
|
|
388 }
|
|
389 if ($arg eq "--not_found") { # Determine whether or not to output a list of sequences that are not ITSs based on the --not_found flag
|
|
390 $i++;
|
|
391 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
392 $out_not = 1;
|
|
393 } else {
|
|
394 $out_not = 0;
|
|
395 }
|
|
396 }
|
|
397 if ($arg eq "--silent") { # Determine whether or not to output anything to the screen based on the --silent flag
|
|
398 $i++;
|
|
399 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
400 $silent = 1;
|
|
401 } else {
|
|
402 $silent = 0;
|
|
403 }
|
|
404 }
|
|
405 if ($arg eq "--graph_scale") { # Set the scale of the graphical output based on the --graph_scale flag
|
|
406 $i++;
|
|
407 $graph_scale = @ARGV[$i];
|
|
408 }
|
|
409 if ($arg eq "--save_raw") { # Determine whether or not to save all the raw intermediate data based on the --save_raw flag
|
|
410 $i++;
|
|
411 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1"
|
|
412 $save_raw = 1;
|
|
413 } else {
|
|
414 $save_raw = 0;
|
|
415 }
|
|
416 }
|
|
417
|
|
418 ## If "-h" or "--help" are among the options, output usage data and options
|
|
419 if (($arg eq "-h") || ($arg eq "--help")) {
|
|
420 print "Usage: ITSx -i <input file> -o <output file>\nOptions:$options";
|
|
421 print "-----------------------------------------------------------------\n";
|
|
422 exit; # Exit ITSx
|
|
423 }
|
|
424
|
|
425 ## If "--bugs" is among the options, output bugs and features information
|
|
426 if ($arg eq "--bugs") {
|
|
427 print "$bugs\n";
|
|
428 exit; # Exit ITSx
|
|
429 }
|
|
430
|
|
431 ## If "--license" is among the options, output license information
|
|
432 if ($arg eq "--license") {
|
|
433 print "$license\n";
|
|
434 exit; # Exit ITSx
|
|
435 }
|
|
436
|
|
437 if ($arg eq "--debug") { # Run ITSx in debug mode
|
|
438 $debug = 1;
|
|
439 }
|
|
440 if ($arg eq "--pipeline") { # Run ITSx in pipeline mode
|
|
441 $pipeline = 1;
|
|
442 }
|
|
443 }
|
|
444
|
|
445 ## Setup some variables dependent on input
|
|
446
|
|
447 if ($multi_thread eq "unset") { # If the multi-thread option is not set
|
|
448 if ($cpu > 1) { # Then if the number of CPUs used > 1, then multi-thread HMMER searches
|
|
449 $multi_thread = 1;
|
|
450 } else { # Else, run HMMER searches sequentially on one CPU
|
|
451 $multi_thread = 0;
|
|
452 }
|
|
453 }
|
|
454
|
|
455 if ($hmmscan ne "") { # If a pre-computed hmmscan output is supplied
|
|
456 $output = $hmmscan; # Then set the base of the output directory name to be the same as that hmmscan output file
|
|
457 }
|
|
458
|
|
459 ## Check for binaries
|
|
460
|
|
461 chomp($path = `which hmmpress`); # Get the path for hmmpress
|
|
462 if ($path eq "") { # If the path is empty, then show an error message and exit ITSx
|
|
463 print STDERR "FATAL ERROR :: Could not locate HMMER binaries! It seems that hmmpress is not installed properly.\
|
|
464 Consult the manual for installation instructions. Note that HMMER3 is required. Previous HMMER-versions will not work.\
|
|
465 This error is fatal, and ITSx will now abort.\n";
|
|
466 print STDERR "-----------------------------------------------------------------\n";
|
|
467 exit;
|
|
468 }
|
|
469
|
|
470 chomp($path = `which hmmscan`); # Get the path for hmmscan
|
|
471 if ($path eq "") { # If the path is empty, then show an error message and exit ITSx
|
|
472 print STDERR "FATAL ERROR :: Could not locate HMMER binaries! It seems that hmmscan is not installed properly.\
|
|
473 Consult the manual for installation instructions. Note that HMMER3 is required. Previous HMMER-versions will not work.\
|
|
474 This error is fatal, and ITSx will now abort.\n";
|
|
475 print STDERR "-----------------------------------------------------------------\n";
|
|
476 exit;
|
|
477 }
|
|
478
|
|
479
|
|
480 ## Check for database
|
|
481 chomp($errormsg = `ls $profileDB* 2>&1 1>/dev/null`); # Get the error msg when looking for the profile database
|
|
482 if (substr($errormsg,0,4) eq "ls: ") { # If the error message begins with "ls: ", then show an error message and exit ITSx
|
|
483 print STDERR "FATAL ERROR :: The specified profile database could not be found.\
|
|
484 Consult the manual for installation instructions.\
|
|
485 This error is fatal, and ITSx will now abort.\n";
|
|
486 print STDERR "-----------------------------------------------------------------\n";
|
|
487 exit;
|
|
488 }
|
|
489
|
|
490 if ($pipeline == 0) { # If ITSx is not run in pipeline mode (i.e. from ITSx)
|
|
491 if ($out_date == 1) { # If a date and time stamp should be supplied
|
|
492 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time); # Get the date and time
|
|
493 $year = $year + 1900; # Format the year
|
|
494 $mon = $mon + 1; # Format the month
|
|
495 if ($mon < 10) { # Add a zero to the month, if needed
|
|
496 $mon = "0" . $mon;
|
|
497 }
|
|
498 if ($mday < 10) { # Add a zero to the day, if needed
|
|
499 $mday = "0" . $mday;
|
|
500 }
|
|
501 if ($hour < 10) { # Add a zero to the hour, if needed
|
|
502 $hour = "0" . $hour;
|
|
503 }
|
|
504 if ($min < 10) { # Add a zero to the minute, if needed
|
|
505 $min = "0" . $min;
|
|
506 }
|
|
507 $outputDate = ".$year\-$mon\-$mday\_$hour.$min"; # Create a date and time stamp
|
|
508 $outputDate =~ s./.-.g; # Remove any potential slashes in the output name (as this will confuse ITSx's file naming)
|
|
509 $output = $output . $outputDate; # Add the date and time stamp top the output base name
|
|
510 }
|
|
511 }
|
|
512
|
|
513 $tempDir = "ITSx_temp_directory__$output"; # Setup a temporary directory variable
|
|
514 $tempDir =~ s./.-.g; # Remove any potential slashes in the output name (as this will confuse ITSx's file naming)
|
|
515
|
|
516 if ($pipeline == 0) { # If not running in pipeline mode
|
|
517 ## Create a summary file
|
|
518 if ($out_sum == 1) { # If summary output is on
|
|
519 $now = localtime; # Get the current time
|
|
520 open (SUMMARY, ">$output.summary.txt"); # Create the summary file
|
|
521 print SUMMARY "ITSx run started at $now.\n"; # Output the starting time for the analysis
|
|
522 print SUMMARY "-----------------------------------------------------------------\n";
|
|
523 close (SUMMARY); # Close summary file
|
|
524 }
|
|
525 }
|
|
526
|
|
527 ## Create a temporary directory for ITSx
|
|
528 if ($pipeline == 0) { # If ITSx is not run in pipeline mode (i.e. from ITSx)
|
|
529 `mkdir $tempDir 2> /dev/null`; # Create a temporary directory
|
|
530 }
|
|
531
|
|
532
|
|
533 ## Prepare profile database
|
|
534 ## Get the current time and output info message
|
|
535 $now = localtime;
|
|
536 if ($silent == 0) {
|
|
537 print STDERR "$now : Preparing HMM database (should be quick)...\n";
|
|
538 }
|
|
539
|
|
540 ## Setup profile index
|
|
541 %profileIndex = {};
|
|
542
|
|
543 # A = Alveolata
|
|
544 # B = Bryophyta
|
|
545 # C = Bacillariophyta
|
|
546 # D = Amoebozoa
|
|
547 # E = Euglenozoa
|
|
548 # F = Fungi
|
|
549 # G = Chlorophyta (green algae)
|
|
550 # H = Rhodophyta (red algae)
|
|
551 # I = Phaeophyceae (brown algae)
|
|
552 # L = Marchantiophyta (liverworts)
|
|
553 # M = Metazoa
|
|
554 # N = Microsporidia
|
|
555 # O = Oomycota
|
|
556 # P = Haptophyceae (prymnesiophytes)
|
|
557 # Q = Raphidophyceae
|
|
558 # R = Rhizaria
|
|
559 # S = Synurophyceae
|
|
560 # T = Tracheophyta (higher plants)
|
|
561 # U = Eustigmatophyceae
|
|
562 # X = Apusozoa
|
|
563 # Y = Parabasalia
|
|
564
|
|
565 $profileIndex{"A"} = "alveolates";
|
|
566 $profileIndex{"B"} = "bryophyta";
|
|
567 $profileIndex{"C"} = "bacillariophyta";
|
|
568 $profileIndex{"D"} = "amoebozoa";
|
|
569 $profileIndex{"E"} = "euglenozoa";
|
|
570 $profileIndex{"F"} = "fungi";
|
|
571 $profileIndex{"G"} = "chlorophyta";
|
|
572 $profileIndex{"H"} = "rhodophyta";
|
|
573 $profileIndex{"I"} = "phaeophyceae";
|
|
574 $profileIndex{"J"} = "undefined";
|
|
575 $profileIndex{"K"} = "undefined";
|
|
576 $profileIndex{"L"} = "marchantiophyta";
|
|
577 $profileIndex{"M"} = "metazoa";
|
|
578 $profileIndex{"N"} = "microsporidia";
|
|
579 $profileIndex{"O"} = "oomycota";
|
|
580 $profileIndex{"P"} = "haptophyceae";
|
|
581 $profileIndex{"Q"} = "raphidophyceae";
|
|
582 $profileIndex{"R"} = "rhizaria";
|
|
583 $profileIndex{"S"} = "synurophyceae";
|
|
584 $profileIndex{"T"} = "tracheophyta";
|
|
585 $profileIndex{"U"} = "eustigmatophyceae";
|
|
586 $profileIndex{"V"} = "undefined";
|
|
587 $profileIndex{"W"} = "undefined";
|
|
588 $profileIndex{"X"} = "apusozoa";
|
|
589 $profileIndex{"Y"} = "parabasalia";
|
|
590 $profileIndex{"Z"} = "undefined";
|
|
591
|
|
592
|
|
593 @profileList = split(',',uc($type)); # Get the list of profile types
|
|
594 foreach $entry (@profileList) { # Go through the entered types
|
|
595 if (($entry eq "ALL") || ($entry eq ".")) { # If "all" among the entries
|
|
596 push(@profileSet,"A"); # Add the alveolates profiles to the investigation set
|
|
597 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set
|
|
598 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set
|
|
599 push(@profileSet,"D"); # Add the amoebozoa profiles to the investigation set
|
|
600 push(@profileSet,"E"); # Add the euglenozoa profiles to the investigation set
|
|
601 push(@profileSet,"F"); # Add the fungi profiles to the investigation set
|
|
602 push(@profileSet,"G"); # Add the green algae profiles to the investigation set
|
|
603 push(@profileSet,"H"); # Add the red algae profiles to the investigation set
|
|
604 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set
|
|
605 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set
|
|
606 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set
|
|
607 #push(@profileSet,"N"); # Add the microsporidia profiles to the investigation set
|
|
608 push(@profileSet,"O"); # Add the oomycetes profiles to the investigation set
|
|
609 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set
|
|
610 push(@profileSet,"Q"); # Add the raphidophytes profiles to the investigation set
|
|
611 push(@profileSet,"R"); # Add the rhizaria profiles to the investigation set
|
|
612 push(@profileSet,"S"); # Add the synurophyceae profiles to the investigation set
|
|
613 push(@profileSet,"T"); # Add the tracheophyta (higher plants) profiles to the investigation set
|
|
614 push(@profileSet,"U"); # Add the eustigmatophytes profiles to the investigation set
|
|
615 #push(@profileSet,"X"); # Add the apusozoa profiles to the investigation set
|
|
616 #push(@profileSet,"Y"); # Add the parabasalia profiles to the investigation set
|
|
617 } else {
|
|
618 if (length($entry) == 1) { # If the name has only one character
|
|
619 if ($entry =~ m/[ABCDERFHILMNOPQRSTUXY]/) { # If the selected set exists
|
|
620 push(@profileSet,$entry); # Add the selected profiles to the investigation set
|
|
621 }
|
|
622 } else {
|
|
623 if ($entry =~ m/ALVEOL/) {
|
|
624 push(@profileSet,"A"); # Add the alveolates profiles to the investigation set
|
|
625 }
|
|
626 if ($entry =~ m/BRYO/) {
|
|
627 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set
|
|
628 }
|
|
629 if ($entry =~ m/MOSS/) {
|
|
630 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set
|
|
631 }
|
|
632 if ($entry =~ m/BACILL/) {
|
|
633 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set
|
|
634 }
|
|
635 if ($entry =~ m/DIATOM/) {
|
|
636 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set
|
|
637 }
|
|
638 if ($entry =~ m/AMOEB/) {
|
|
639 push(@profileSet,"D"); # Add the amoebozoa profiles to the investigation set
|
|
640 }
|
|
641 if ($entry =~ m/EUGLE/) {
|
|
642 push(@profileSet,"E"); # Add the euglenozoa profiles to the investigation set
|
|
643 }
|
|
644 if ($entry =~ m/FUNG/) {
|
|
645 push(@profileSet,"F"); # Add the fungi profiles to the investigation set
|
|
646 }
|
|
647 if ($entry =~ m/GREEN/) {
|
|
648 push(@profileSet,"G"); # Add the green algae profiles to the investigation set
|
|
649 }
|
|
650 if ($entry =~ m/CHLORO/) {
|
|
651 push(@profileSet,"G"); # Add the green algae profiles to the investigation set
|
|
652 }
|
|
653 if ($entry =~ m/RED-AL/) {
|
|
654 push(@profileSet,"H"); # Add the red algae profiles to the investigation set
|
|
655 }
|
|
656 if ($entry =~ m/RHODO/) {
|
|
657 push(@profileSet,"H"); # Add the red algae profiles to the investigation set
|
|
658 }
|
|
659 if ($entry =~ m/BROWN/) {
|
|
660 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set
|
|
661 }
|
|
662 if ($entry =~ m/PHAEOP/) {
|
|
663 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set
|
|
664 }
|
|
665 if ($entry =~ m/LIVER/) {
|
|
666 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set
|
|
667 }
|
|
668 if ($entry =~ m/MARCH/) {
|
|
669 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set
|
|
670 }
|
|
671 if ($entry =~ m/METAZ/) {
|
|
672 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set
|
|
673 }
|
|
674 if ($entry =~ m/ANIMAL/) {
|
|
675 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set
|
|
676 }
|
|
677 if ($entry =~ m/MICROSPOR/) {
|
|
678 push(@profileSet,"N"); # Add the microsporidia profiles to the investigation set
|
|
679 }
|
|
680 if ($entry =~ m/OOMYC/) {
|
|
681 push(@profileSet,"O"); # Add the oomycetes profiles to the investigation set
|
|
682 }
|
|
683 if ($entry =~ m/PRYMN/) {
|
|
684 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set
|
|
685 }
|
|
686 if ($entry =~ m/HAPTO/) {
|
|
687 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set
|
|
688 }
|
|
689 if ($entry =~ m/RAPHID/) {
|
|
690 push(@profileSet,"Q"); # Add the raphidophytes profiles to the investigation set
|
|
691 }
|
|
692 if ($entry =~ m/RHIZA/) {
|
|
693 push(@profileSet,"R"); # Add the rhizaria profiles to the investigation set
|
|
694 }
|
|
695 if ($entry =~ m/SYNUR/) {
|
|
696 push(@profileSet,"S"); # Add the synurophyceae profiles to the investigation set
|
|
697 }
|
|
698 if ($entry =~ m/TRACHE/) {
|
|
699 push(@profileSet,"T"); # Add the tracheophyta profiles to the investigation set
|
|
700 }
|
|
701 if ($entry =~ m/PLANTS/) {
|
|
702 push(@profileSet,"T"); # Add the tracheophyta profiles to the investigation set
|
|
703 }
|
|
704 if ($entry =~ m/EUSTIG/) {
|
|
705 push(@profileSet,"U"); # Add the eustigmatophytes profiles to the investigation set
|
|
706 }
|
|
707 if ($entry =~ m/APUSO/) {
|
|
708 push(@profileSet,"X"); # Add the apusozoa profiles to the investigation set
|
|
709 }
|
|
710 if ($entry =~ m/PARAB/) {
|
|
711 push(@profileSet,"Y"); # Add the parabasalia profiles to the investigation set
|
|
712 }
|
|
713 }
|
|
714 }
|
|
715 }
|
|
716
|
|
717 foreach $set (@profileSet) { # For each set of profiles in the the full profile set for investigation
|
|
718 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Determine the path to the HMM-file
|
|
719 chomp($modelCount = `grep -c "//" $hmmPath`); # Count the number of models in the HMM-file
|
|
720 push(@modelCount,$modelCount); # Add the number of models in this HMM-file to the list of model counts
|
|
721 if ($reset == 1) {
|
|
722 `rm -f $hmmPath.h3* 2> /dev/null`; # Delete old HMM-files
|
|
723 `hmmpress $hmmPath 2> /dev/null`; # Prepare the HMM-file for searching
|
|
724 ## Redirecting stderr is a quick and dirty solution to get rid of the messages... Could be made more elegant
|
|
725 }
|
|
726 }
|
|
727
|
|
728 ## Clean-up input files and create complementary strand if needed
|
|
729 ## Get the current time and output an info message
|
|
730 $now = localtime;
|
|
731 if ($silent == 0) {
|
|
732 print STDERR "$now : Checking and handling input sequence data (should not take long)...\n";
|
|
733 }
|
|
734
|
|
735 ## Open the summary file for writing
|
|
736 if ($out_sum == 1) { # If summary output is on
|
|
737 open (SUMMARY, ">>$output.summary.txt"); # Append to the summary file
|
|
738 }
|
|
739
|
|
740 if ($input ne "") { # If an input file is given
|
|
741 ## Read from file
|
|
742 open (SEQUENCES, $input); # Open the input file for reading
|
|
743 open (MAIN, ">$tempDir/main.fasta"); # Create a temporary file for storing the cleaned sequences representing the main strand
|
|
744 open (COMPLEMENT, ">$tempDir/complement.fasta"); # Create a temporary file for storing the cleaned sequences representing the complementary strand
|
|
745 $inputSequenceCount = 0; # Reset input sequence counter
|
|
746 while ($sequence = <SEQUENCES>) { # Repeat for every line in the input file
|
|
747 chomp($sequence); # Truncate any potential line feeds
|
|
748 $sequence =~ tr/\r\n//d; # Remove all carriage return and new line characters
|
|
749 if (substr($sequence,0,1) eq ">") { # If a new FASTA entry is found in the input file
|
|
750 $inputSequenceCount++; # Add one to the input sequence counter
|
|
751 print MAIN $mainSeq . "\n"; # Write the previous main DNA sequence to the main sequence file
|
|
752 print MAIN $sequence . " main\n"; # Write the definition line of the new sequence to the main sequence file
|
|
753 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database
|
|
754 $headers{"$sequenceID"} = $header; # Add the header to the header database
|
|
755 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences
|
|
756 ($sequenceID) = split(" ",substr($sequence,1));
|
|
757 $header = $sequence; # Save the sequence header
|
|
758 $mainSeq = ""; # Empty the main sequence entry
|
|
759 if ($complement == 1) { # If the complementary file should be written
|
|
760 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence
|
|
761 print COMPLEMENT $complementSeq . "\n"; # Write the previous complementary DNA sequence to the complementary sequence file
|
|
762 print COMPLEMENT $sequence . " complement\n"; # Write the definition line of the new sequence to the complement sequence file
|
|
763 $complementSeq = ""; # Empty the complementary sequence entry
|
|
764 }
|
|
765 } else { # If this line is just a continuation of the current DNA sequence
|
|
766 $mseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $mseq
|
|
767 $mseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment)
|
|
768 $mseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase
|
|
769 $mseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters
|
|
770 $mseq =~ tr/U/T/; # Exchanges U:s for T:s (Uracil to Thymine, good if input was RNA sequence)
|
|
771 $mainSeq = $mainSeq . $mseq; # Add the intermediate DNA sequence to the end of the main DNA sequence entry
|
|
772
|
|
773 if ($complement == 1) { # If the complementary file should be written
|
|
774 $cseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $cseq
|
|
775 $cseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment)
|
|
776 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase
|
|
777 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters
|
|
778 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base
|
|
779 $complementSeq = $complementSeq . $cseq; # Add the intermediate DNA sequence to the end of the complementary DNA sequence entry
|
|
780 }
|
|
781 }
|
|
782 }
|
|
783 ## When the input file's end is reached
|
|
784 print MAIN $mainSeq . "\n"; # Write the last main DNA sequence to the main sequence file
|
|
785 if ($complement == 1) { # If the complementary file should be written
|
|
786 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence
|
|
787 print COMPLEMENT $complementSeq . "\n"; # Write the last complementary DNA sequence to the complementary sequence file
|
|
788 }
|
|
789 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database
|
|
790 $headers{"$sequenceID"} = $header; # Add the header to the header database
|
|
791 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences
|
|
792 $mainSeq = ""; # Empty the main sequence entry
|
|
793 $complementSeq = ""; # Empty the complementary sequence entry
|
|
794 close (SEQUENCES); # Close the sequence input file
|
|
795 close (COMPLEMENT); # Close the complementary output file
|
|
796 close (MAIN); # Close the main output file
|
|
797 } else { # If no input file is supplied, then read from stdin instead
|
|
798 $input = "$tempDir/main.fasta"; # Set up a temporary input file path
|
|
799 open (MAIN, ">$tempDir/main.fasta"); # Create a temporary file for storing the cleaned sequences representing the main strand
|
|
800 open (COMPLEMENT, ">$tempDir/complement.fasta"); # Create a temporary file for storing the cleaned sequences representing the complementary strand
|
|
801 $inputSequenceCount = 0; # Reset input sequence counter
|
|
802 while ($sequence = <STDIN>) { # Repeat for every line in the standard input
|
|
803 chomp($sequence); # Truncate any potential line feeds
|
|
804 if (substr($sequence,0,1) eq ">") { # If a new FASTA entry is found in the input
|
|
805 $inputSequenceCount++; # Add one to the input sequence counter
|
|
806 print MAIN $mainSeq . "\n"; # Write the previous main DNA sequence to the main sequence file
|
|
807 print MAIN $sequence . " main\n"; # Write the definition line of the new sequence to the main sequence file
|
|
808 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database
|
|
809 $headers{"$sequenceID"} = $header; # Add the header to the header database
|
|
810 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences
|
|
811 $sequenceID = split(" ",substr($sequence,1));
|
|
812 $header = $sequence; # Save the sequence header
|
|
813 $mainSeq = ""; # Empty the main sequence entry
|
|
814 if ($complement == 1) { # If the complementary file should be written
|
|
815 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence
|
|
816 print COMPLEMENT $complementSeq . "\n"; # Write the previous complementary DNA sequence to the complementary sequence file
|
|
817 print COMPLEMENT $sequence . " complement\n"; # Write the definition line of the new sequence to the complement sequence file
|
|
818 $complementSeq = ""; # Empty the complementary sequence entry
|
|
819 }
|
|
820 } else { # If this line is just a continuation of the current DNA sequence
|
|
821 $mseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $mseq
|
|
822 $mseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment)
|
|
823 $mseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase
|
|
824 $mseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters
|
|
825 $mseq =~ tr/U/T/; # Exchanges U:s for T:s (Uracil to Thymine, good if input was RNA sequence)
|
|
826 $mainSeq = $mainSeq . $mseq; # Add the intermediate DNA sequence to the end of the main DNA sequence entry
|
|
827
|
|
828 if ($complement == 1) { # If the complementary file should be written
|
|
829 $cseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $cseq
|
|
830 $cseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment)
|
|
831 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase
|
|
832 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters
|
|
833 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base
|
|
834 $complementSeq = $complementSeq . $cseq; # Add the intermediate DNA sequence to the end of the complementary DNA sequence entry
|
|
835 }
|
|
836 }
|
|
837 }
|
|
838 ## When the input file's end is reached
|
|
839 print MAIN $mainSeq . "\n"; # Write the last main DNA sequence to the main sequence file
|
|
840 if ($complement == 1) { # If the complementary file should be written
|
|
841 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence
|
|
842 print COMPLEMENT $complementSeq . "\n"; # Write the last complementary DNA sequence to the complementary sequence file
|
|
843 }
|
|
844 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database
|
|
845 $headers{"$sequenceID"} = $header; # Add the header to the header database
|
|
846 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences
|
|
847 $mainSeq = ""; # Empty the main sequence entry
|
|
848 $complementSeq = ""; # Empty the complementary sequence entry
|
|
849 close (COMPLEMENT); # Close the complementary output file
|
|
850 close (MAIN); # Close the main output file
|
|
851 }
|
|
852
|
|
853 if ($out_sum == 1) { # If summary output should be written
|
|
854 print SUMMARY "Number of sequences in input file: \t$inputSequenceCount\n"; # Write info on the number of input sequences to the summary file
|
|
855 }
|
|
856
|
|
857
|
|
858 ## Perform HMM-scan
|
|
859 if ($hmmscan eq "") { # If a pre-computed hmmscan output file is not supplied
|
|
860 if ($heuristics == 0) { # If HMMER's heuristic filtering should not be used
|
|
861 $heurMax = "--max"; # Set the heurMax to "--max" (indicating that HMMER should turn off filtering)
|
|
862 } else {
|
|
863 $heurMax = ""; # Set the heurMax to empty (indicating that HMMER should turn on filtering)
|
|
864 }
|
|
865 if ($multi_thread == 0) { # If multi-threading is off
|
|
866 ## Get the current time and output info message
|
|
867 $now = localtime;
|
|
868 if ($silent == 0) {
|
|
869 print STDERR "$now : Comparing sequences to HMM database (this may take a long while)...\n";
|
|
870 }
|
|
871 foreach $set (@profileSet) { # Go sequentially through all profile sets to search for
|
|
872 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set
|
|
873 if ($search_eval ne "") { # If E-value cutoff is use for the search
|
|
874 hmmerSearch("hmmscan --cpu $cpu $heurMax -E $search_eval $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with E-value cutoff
|
|
875 } else { # If score cutoff is use for the search
|
|
876 hmmerSearch("hmmscan --cpu $cpu $heurMax -T $search_score $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with score cutoff
|
|
877 }
|
|
878 if ($complement == 1) { # If the complementary file should be scanned
|
|
879 if ($search_eval ne "") { # If E-value cutoff is use for the search
|
|
880 hmmerSearch("hmmscan --cpu $cpu $heurMax -E $search_eval $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with E-value cutoff
|
|
881 } else { # If score cutoff is use for the search
|
|
882 hmmerSearch("hmmscan --cpu $cpu $heurMax -T $search_score $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with score cutoff
|
|
883 }
|
|
884 }
|
|
885 }
|
|
886 } else { # If multi-threading is on
|
|
887 ## Get the current time and output info message
|
|
888 $now = localtime;
|
|
889 if ($silent == 0) {
|
|
890 print STDERR "$now : Doing paralellised comparison to HMM database (this may take a long while)...\n";
|
|
891 }
|
|
892
|
|
893 ## Determining number of cpus per thread
|
|
894 if ($complement == 1) { # If the complementary file should be scanned
|
|
895 $hmmcpu = int(0.5 * $cpu / scalar(@profileSet)); # Assign X CPUs to each thread, X = 0.5 * (TOTAL_CPUs_USED) / (TOTAL_NUMBER_OF_PROFILE_SETS)
|
|
896 } else { # If the complementary file should not be scanned
|
|
897 $hmmcpu = int($cpu / scalar(@profileSet)); # Assign X CPUs to each thread, X = (TOTAL_CPUs_USED) / (TOTAL_NUMBER_OF_PROFILE_SETS)
|
|
898 }
|
|
899 if ($hmmcpu < 1) { # If the number of CPUs per thread is smaller than 1
|
|
900 $hmmcpu = 1; # Give each thread at least one CPU to work on
|
|
901 }
|
|
902 ## Main strand searches...
|
|
903 $cpuCount = 0;
|
|
904 foreach $set (@profileSet) { # Go through each profile set to investigate
|
|
905 if ($cpuCount < $cpu) {
|
|
906 $cpuCount++;
|
|
907 $pid = fork(); # Fork off a copy of this process for this set
|
|
908 } else {
|
|
909 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number
|
|
910 $pid = fork(); # Fork off a copy of this process for this set
|
|
911 }
|
|
912 if ($pid != 0) { # If this is the parent process
|
|
913 push(@pids,$pid); # Add the new process ID to the list of active process IDs
|
|
914 } else { # If this is the new child process
|
|
915 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set
|
|
916 if ($search_eval ne "") { # If E-value cutoff is use for the search
|
|
917 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -E $search_eval $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with E-value cutoff
|
|
918 } else { # If score cutoff is use for the search
|
|
919 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -T $search_score $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with score cutoff
|
|
920 }
|
|
921 ## Stop child process...
|
|
922 exit; # Exits the child process
|
|
923 }
|
|
924 }
|
|
925 ## Revese strand searches...
|
|
926 if ($complement == 1) { # If the complementary file should be scanned
|
|
927 foreach $set (@profileSet) { # Go through each profile set to investigate
|
|
928 if ($cpuCount < $cpu) {
|
|
929 $cpuCount++;
|
|
930 $pid = fork(); # Fork off a copy of this process for this set
|
|
931 } else {
|
|
932 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number
|
|
933 $pid = fork(); # Fork off a copy of this process for this set
|
|
934 }
|
|
935 if ($pid != 0) { # If this is the parent process
|
|
936 push(@pids,$pid); # Add the new process ID to the list of active process IDs
|
|
937 } else { # If this is the new child process
|
|
938 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set
|
|
939 if ($search_eval ne "") { # If E-value cutoff is use for the search
|
|
940 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -E $search_eval $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with E-value cutoff
|
|
941 } else { # If score cutoff is use for the search
|
|
942 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -T $search_score $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with score cutoff
|
|
943 }
|
|
944 ## Stop child process...
|
|
945 exit; # Exits the child process
|
|
946 }
|
|
947 }
|
|
948 }
|
|
949 ## Get the current time and output the active process IDs
|
|
950 $now = localtime;
|
|
951 #print STDERR " $now : Active PIDs: ";
|
|
952 #foreach $p (@pids) { # Go through the list of PIDs
|
|
953 # print STDERR "$p "; # Print the PID
|
|
954 #}
|
|
955 #print STDERR "\n"; # Print a new line
|
|
956 do { # Loop until all child PIDs have finished.
|
|
957 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number
|
|
958 $now = localtime; # Get the current time
|
|
959 if ($deceasedPID > -1) { # If the PID that finished wasn't the last active one
|
|
960 # print STDERR " $now : PID $deceasedPID finished.\n"; # Print finished PID
|
|
961 } else { # If PID that finished was the last
|
|
962 print STDERR " $now : All processes finished.\n"; # Print that all PIDs have finished
|
|
963 }
|
|
964 } until (wait() == -1); # Do this loop until all PIDs have finished
|
|
965 $now = localtime; # Get current time
|
|
966 print STDERR "$now : Parallel HMM-scan finished.\n"; # Print informative finishing message
|
|
967 }
|
|
968 } else { # If a pre-computed hmmscan file is supplied then
|
|
969 ## Get the current time and output that the hmmscan step is skipped
|
|
970 $now = localtime;
|
|
971 if ($silent == 0) {
|
|
972 print STDERR "$now : Skipping hmmscan! Using $hmmscan as input for the analysis instead.\n";
|
|
973 }
|
|
974 }
|
|
975
|
|
976 ## Analyse HMM-scan output
|
|
977 ## Get the current time and output info
|
|
978 $now = localtime;
|
|
979 if ($silent == 0) {
|
|
980 print STDERR "$now : Analysing results of HMM-scan (this might take quite some time)...\n";
|
|
981 }
|
|
982
|
|
983 ## Set up output files
|
|
984 if ($out_table == 1) { # If table output is on
|
|
985 open (TABLE, ">$output.hmmer.table"); # Create a table output file
|
|
986 }
|
|
987 if ($out_graph == 1) { # If graphical output is on
|
|
988 open (GRAPH, ">$output.graph"); # Create a graph output file
|
|
989 }
|
|
990 if ($out_not == 1) { # If not-found output is on
|
|
991 open (NOTFOUND, ">$tempDir/$output\_hmmer_no_detections.txt"); # Create a HMMER not-found output file
|
|
992 }
|
|
993
|
|
994 $setI = 0; # Set the profile set indicator to zero
|
|
995 foreach $set (@profileSet) { # Go through all the profile sets to be investigated
|
|
996 for ($co = 0; $co <= 1; $co++) { # Do main (and complementary) strand analysis in order
|
|
997 if ($co > 0) { # If main strand analysis is finished
|
|
998 if ($complement == 1) { # If complementary strand should be analysed
|
|
999 open (HMMOUTPUT, "$tempDir/complement.$set.hmmscan"); # Open hmmscan output for reading
|
|
1000 open (SEQUENCES, "$tempDir/complement.fasta"); # Open complementary sequence file for reading
|
|
1001 if ($out_table == 1) { # If table output is on, write a header for this set
|
|
1002 print TABLE "***********************************************************\n";
|
|
1003 print TABLE "$set matches on complementary strand:\n";
|
|
1004 }
|
|
1005 if ($out_graph == 1) { # If graphical output is on, write a header for this set
|
|
1006 print GRAPH "***********************************************************\n";
|
|
1007 print GRAPH "$set matches on complementary strand:\n";
|
|
1008 }
|
|
1009 } else { # If complementary strand should not be analysed
|
|
1010 last; # Exit this loop
|
|
1011 }
|
|
1012 }
|
|
1013 if ($co == 0) { # If main strand analysis is not finished
|
|
1014 open (HMMOUTPUT, "$tempDir/main.$set.hmmscan"); # Open hmmscan output for reading
|
|
1015 open (SEQUENCES, "$tempDir/main.fasta"); # Open main sequence file for reading
|
|
1016 if ($out_table == 1) { # If table output is on, write a header for this set
|
|
1017 print TABLE "***********************************************************\n";
|
|
1018 print TABLE "$set matches on main strand:\n";
|
|
1019 }
|
|
1020 if ($out_graph == 1) { # If graphical output is on, write a header for this set
|
|
1021 print GRAPH "***********************************************************\n";
|
|
1022 print GRAPH "$set matches on main strand:\n";
|
|
1023 }
|
|
1024 }
|
|
1025 ## Read and analyse hmmscan output file
|
|
1026 while ($line = <HMMOUTPUT>) { # Read in the hmmscan output file, line by line
|
|
1027 chomp($line); # Remove any potential line feeds
|
|
1028 if (substr($line,0,13) eq "## New query:") { # If this line begin with "## New query:", then this is a new entry
|
|
1029 undef %hits; # Empty the hits hash
|
|
1030 undef %evals; # Empty the e-value hash
|
|
1031 undef %scores; # Empty the score hash
|
|
1032 $querytemp = substr($line,14); # Extract everything from this line, except for the start ("## New query:")
|
|
1033 ($query,$length) = split('\t',$querytemp); # Split query name, length and DNA sequence
|
|
1034 if ($co == 0) { # If main strand analysis
|
|
1035 $DNA = $sequenceDB{"$query"};
|
|
1036 } else { # If complementary strand
|
|
1037 $cseq = $sequenceDB{"$query"}; # Store the DNA sequence in the intermediate varaible $cseq
|
|
1038 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase
|
|
1039 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters
|
|
1040 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base
|
|
1041 $DNA = reverse($cseq);
|
|
1042 }
|
|
1043 } else {
|
|
1044
|
|
1045 if ($line ne "//") {
|
|
1046 ## Find domain annotations...
|
|
1047 ($query,$matchProfile,$length,$domNo,$sign,$score,$bias,$cE,$iE,$hmmFrom,$hmmTo,$hmmends,$queryFrom,$queryTo,$queryends,$envFrom,$envTo,$envends,$acc) = split('\t',$line); # Split the line into a collection of stat variables
|
|
1048
|
|
1049 $useQueryFrom = $queryFrom;
|
|
1050 if ($hmmFrom > 1) { # If the HMM-profile is not matched from the beginning
|
|
1051 $hmmDiff = $hmmFrom - 1;
|
|
1052 if ($useQueryFrom > $hmmDiff) {
|
|
1053 $useQueryFrom = $queryFrom - $hmmDiff;
|
|
1054 } else {
|
|
1055 $useQueryFrom = 1;
|
|
1056 }
|
|
1057 }
|
|
1058
|
|
1059 if (uc($anchor) eq "HMM") {
|
|
1060 $anchorLen = $hmmTo - $hmmFrom + 1;
|
|
1061 } else {
|
|
1062 $anchorLen = $anchor;
|
|
1063 }
|
|
1064
|
|
1065
|
|
1066 $query_profile_match = $query . ":" . $matchProfile;
|
|
1067 $profileExists = 0; # Assume that the newly found match profile ($matchProfile) is not already found for this sequence
|
|
1068 if (exists($hits{$query_profile_match})) { # If a profile from the list is the same as the match profile
|
|
1069 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE) = split('\t',$hits{$query_profile_match}); # Split the entry in list into stat variables
|
|
1070 if ($iE < $hitE) { # If the new match profile has a smaller E-value than the one from the list
|
|
1071 $hits{$query_profile_match} = "$useQueryFrom\t$envTo\t$matchProfile\t$score\t$iE\t$anchorLen"; # Replace the data in the hit list with the data for the newly found match profile
|
|
1072 $evals{$query_profile_match} = $iE; # Replace the E-value in the hit list with the E-value for the newly found match profile
|
|
1073 $scores{$query_profile_match} = $score; # Replace the score in the hit list with the score for the newly found match profile
|
|
1074 }
|
|
1075 $profileExists = 1; # Indicate that this match profile was found in the hit list
|
|
1076 }
|
|
1077 if ($profileExists == 0) { # If the match profile was not found in the hit list
|
|
1078 if (($iE <= $E) && ($score >= $S)) { # If this hits lives up to the minimal score and E-value cutoffs
|
|
1079 $hits{$query_profile_match} = "$useQueryFrom\t$envTo\t$matchProfile\t$score\t$iE\t$anchorLen"; # Add the data for the newly found match profile
|
|
1080 $evals{$query_profile_match} = $iE; # Add the E-value for the newly found match profile
|
|
1081 $scores{$query_profile_match} = $score; # Add the score for the newly found match profile
|
|
1082 }
|
|
1083 }
|
|
1084 } else { # If the line only contains "//", the end of this sequence's hmmscan entry is reached
|
|
1085 ## Save analysis results
|
|
1086 @sortedKeys = sort {$hits{$a} <=> $hits{$b}} keys(%hits); # Sort the the list of hits numerically ascending (smallest first)
|
|
1087 undef @sortedHits;
|
|
1088 undef @scores;
|
|
1089 undef @evals;
|
|
1090 foreach $key (@sortedKeys) {
|
|
1091 push(@sortedHits, $hits{$key}); # Add the hit to the list of hits numerically ascending (smallest first)
|
|
1092 push(@scores, $scores{$key}); # Add the score to the scores array
|
|
1093 push(@evals, $evals{$key}); # Add the E-value to the evals array
|
|
1094 }
|
|
1095
|
|
1096 ## If the number of hits > N, the min eval < E and the max score > S then include query sequence
|
|
1097 ## OR if a single domain satisfies the thresholds and this is allowed, include it!
|
|
1098 if ( ((scalar(@sortedHits) >= $N) && (min(@evals) <= $E) && (max(@scores) >= $S)) ||
|
|
1099 ((scalar(@sortedHits) > 0) && ($allow_single_E >= 0) && (min(@evals) <= $allow_single_E) && (max(@scores) >= $allow_single_score)) ) {
|
|
1100 if ($debug == 1) { # If debugging mode is on
|
|
1101 print STDERR $query . " :\t" . scalar(@sortedHits) . "\t" . min(@evals) . "\t" . max(@scores) . "\n"; # Print some top hit statistics
|
|
1102 }
|
|
1103
|
|
1104 ## Save some total stats to be able to determine origin of ITS sequence
|
|
1105 if (scalar(@evals) > 0) { # If there are any E-values stored
|
|
1106 $averageE = sum(@evals) / scalar(@evals); # Calculate the average E-value for this profile set
|
|
1107 $averageScore = sum(@scores) / scalar(@scores); # Calculate the average score for this profile set
|
|
1108 $numberOfDomains = scalar(@sortedHits); # Calculate the number of domains matched on this sequence
|
|
1109
|
|
1110 #$scoreSum = sum(@scores) / @modelCount[$setI]; # Calculate score sum as: sum / (no. of profiles of this given type)
|
|
1111 $scoreSum = sum(@scores) / 4; # Calculate score sum as: sum / (no. of profiles of this given type)
|
|
1112
|
|
1113 $saveThis = "$query\t$set\t$co\t$numberOfDomains\t$averageE\t$averageScore\t$scoreSum\t$DNA\t"; # Collect the variables to save for this sequence and this profile set
|
|
1114 foreach $hit (@sortedHits) { # Go through the list of hits and add specific information to save from each hit
|
|
1115 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$hitanchorlen) = split('\t',$hit); # Extract information from this hit
|
|
1116 $saveThis = $saveThis . "$hitFrom;$hitTo;$hitProfile;$hitScore;$hitE;$hitanchorlen\t"; # Add information to the list of variables to save
|
|
1117 }
|
|
1118 #push(@allHits, $saveThis); # Add this information to the collection of all hits for this sequence, across all profile sets
|
|
1119 if (exists($allHits{$query})) {
|
|
1120 $allHits{$query} = $allHits{$query} . "\n" . $saveThis;
|
|
1121 } else {
|
|
1122 $allHits{$query} = $saveThis;
|
|
1123 }
|
|
1124 }
|
|
1125
|
|
1126 if ($out_table == 1) { # If table output is on
|
|
1127 print TABLE $query . "\t" . $length . "\t"; # Print query and length information to table
|
|
1128 foreach $hit (@sortedHits) { # Go through each hit in the hit list
|
|
1129 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$hitanchorlen) = split('\t',$hit); # Extract data corresponding to this hit
|
|
1130 print TABLE "$hitFrom - $hitTo: $hitProfile ($hitScore, $hitE)\t"; # Print hit information to table
|
|
1131 }
|
|
1132 print TABLE "\n"; # Print new line
|
|
1133 }
|
|
1134
|
|
1135 if ($out_graph == 1) { # If graphical output is on
|
|
1136 print GRAPH ">> " . $query . "\t" . $length . " bp\n"; # Print a sequence header
|
|
1137 $insertPoint = 0; # Set the domain insert point to beginning of line
|
|
1138 $hi = 0; # Set hit number to zero
|
|
1139 foreach $hit (@sortedHits) { # Go through the hit list
|
|
1140 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$anchorLen) = split('\t',$hit); # Split the hit into stat variables
|
|
1141 if ($graph_scale == 0) { # If the graph scale is scaled individually to 100% for each sequence
|
|
1142 $pFrom = $hitFrom / $length * 100; # Set the profile start on graph relative to its position in the sequence
|
|
1143 $pTo = $hitTo / $length * 100; # Set the profile end on graph relative to its position in the sequence
|
|
1144 $pEnd = 100; # Set the end of the sequence graph to be at 100
|
|
1145 } else { # If the scale is the same for all sequences
|
|
1146 $pFrom = $hitFrom * $graph_scale; # Set the profile start on graph scaled to the parameter given
|
|
1147 $pTo = $hitTo * $graph_scale; # Set the profile end on graph scaled to the parameter given
|
|
1148 $pEnd = $length * $graph_scale; # Set the end of the sequence graph to be at the end of the sequence scaled to the parameter given
|
|
1149 }
|
|
1150 for ($insertPoint = $insertPoint; $insertPoint <= $pFrom; $insertPoint++) { # Go forward through the sequence, moving the insert point one step at a time until the beginning of the next profile is reached
|
|
1151 print GRAPH "-"; # Print a "-"
|
|
1152 }
|
|
1153 print GRAPH substr($hitProfile,2,3); # When the profile is reached, print its name
|
|
1154 $insertPoint = $insertPoint + 3; # Move the insert point three steps forward, to account for the inserted name
|
|
1155 ($nextHitStart,$nextHitEnd,$nextProfile) = split('\t',@sortedHits[$hi + 1]); # Check where the next hit in the list is located
|
|
1156 if (($nextHitStart <= $hitTo) && ($nextHitStart > 0)) { # If the next hit in the list overlaps with this profile
|
|
1157 if ($graph_scale == 0) { # If the scale is relative
|
|
1158 $pTo = $nextHitStart / $length * 100 - 1; # Change the profile end on the graph to be where this next profile starts
|
|
1159 } else { # If the scale is the same for all sequences
|
|
1160 $pTo = $nextHitStart * $graph_scale - 1; # Change the profile end on the graph to be where this next profile starts
|
|
1161 }
|
|
1162 }
|
|
1163 for ($insertPoint = $insertPoint; $insertPoint <= $pTo; $insertPoint++) { # Go forward through the sequence, moving the insert point one step at a time until the end of the current profile is reached
|
|
1164 print GRAPH "="; # Print a "="
|
|
1165 }
|
|
1166 if (($nextHitStart <= $hitTo) && ($nextHitStart > 0)) { # If the next hit in the list overlaps with this profile
|
|
1167 print GRAPH ">"; # Print a ">" to indicate the profile overlap
|
|
1168 $insertPoint++; # Move the insert point one additional step forward to account for the ">" inserted
|
|
1169 }
|
|
1170 $hi++; # Increase the hit number by one
|
|
1171 }
|
|
1172 for ($insertPoint = $insertPoint; $insertPoint <= $pEnd; $insertPoint++) { # If there is no more profile matches to sequence, go forward through the sequence, moving the insert point one step at a time until the end of the sequence is reached
|
|
1173 print GRAPH "-"; # Print a "-"
|
|
1174 }
|
|
1175 print GRAPH "\n"; # Print a new line, indicating the end of this sequence entry
|
|
1176 }
|
|
1177 } else { # If this sequence didn't find any good-enough profile matches
|
|
1178 if ($out_not == 1) { # If not-found output is on
|
|
1179 print NOTFOUND $query . "\n"; # Print the name of this query to the not-found list
|
|
1180 }
|
|
1181 }
|
|
1182 }
|
|
1183 }
|
|
1184 }
|
|
1185 close (SEQUENCES); # Close the input sequence file
|
|
1186 close (HMMOUTPUT); # Close the hmmscan output file
|
|
1187 }
|
|
1188 $setI++; # Add one to the profile set indicator
|
|
1189 }
|
|
1190
|
|
1191 ## Close output files
|
|
1192 if ($out_table == 1) { # If table output is on, close the table file
|
|
1193 close (TABLE);
|
|
1194 }
|
|
1195 if ($out_graph == 1) { # If graphical output is on, close the graph file
|
|
1196 close (GRAPH);
|
|
1197 }
|
|
1198 if ($out_not == 1) { # If not-found output is on, close the not-found file
|
|
1199 close (NOTFOUND);
|
|
1200 #$profileCount = scalar(@profileSet); # Count the number of profile sets
|
|
1201 #if ($complement == 1) { # If complementary strand was scanned
|
|
1202 # $profileCount = $profileCount * 2; # Double the number of profile sets that was investigated (and thus the number of not-founds that could at max be found)
|
|
1203 #}
|
|
1204 #`sort $tempDir/hmmer_no_detections.txt | uniq -c | grep " *$profileCount " | sed "s/ *$profileCount //" > $output\_no_detections.txt`; # Sort the not-found list, count the number of profile sets having no matches for each query. Save those that have only non-matches to the hmmer-not-found file
|
|
1205 }
|
|
1206
|
|
1207
|
|
1208 ## Create total collected output and FASTA output
|
|
1209
|
|
1210 if ($out_results == 1) {
|
|
1211 open (RESULTS, ">$output.extraction.results"); # Create a results file
|
|
1212 }
|
|
1213 open (RAWOUT, ">$tempDir/ITSx_output.raw"); # Create a raw output file for ALL data
|
|
1214 open (PROBLEM, ">$output.problematic.txt"); # Create a file for problematic entries
|
|
1215 $foundProblem = 0;
|
|
1216 if ($out_pos == 1) {
|
|
1217 open (POS, ">$output.positions.txt"); # Create a positions file
|
|
1218 }
|
|
1219 if ($out_fasta == 1) { # If FASTA output should be written
|
|
1220 open (FASTA, ">$output.full.fasta"); # Create a FASTA output file for found sequences
|
|
1221 if ($allow_reorder == 0) { # If reordering of domains is not allowed
|
|
1222 open (CHIMERA, ">$output.chimeric.fasta"); # Create a FASTA file for potential chimera sequences with profile matches in the wrong order
|
|
1223 $foundChimera = 0;
|
|
1224 }
|
|
1225 if ($out_partial > 0) {
|
|
1226 open (FULLPARTIAL, ">$output.full_and_partial.fasta");
|
|
1227 }
|
|
1228 }
|
|
1229
|
|
1230 if ($out_joined == 1) { # If SSU FASTA output should be written
|
|
1231 open (JOINED, ">$output.joined.fasta");
|
|
1232 }
|
|
1233 if ($out_ssu == 1) { # If SSU FASTA output should be written
|
|
1234 open (SSU, ">$output.SSU.fasta");
|
|
1235 }
|
|
1236 if ($out_lsu == 1) { # If LSU FASTA output should be written
|
|
1237 open (LSU, ">$output.LSU.fasta");
|
|
1238 }
|
|
1239 if ($out_58S == 1) { # If 5.8S FASTA output should be written
|
|
1240 open (MID, ">$output.5_8S.fasta");
|
|
1241 }
|
|
1242 if ($out_its1 == 1) { # If ITS1 FASTA output should be written
|
|
1243 open (ITS1, ">$output.ITS1.fasta");
|
|
1244 if ($out_partial > 0) {
|
|
1245 open (ITS1PARTIAL, ">$output.ITS1.full_and_partial.fasta");
|
|
1246 }
|
|
1247 }
|
|
1248 if ($out_its2 == 1) { # If ITS2 FASTA output should be written
|
|
1249 open (ITS2, ">$output.ITS2.fasta");
|
|
1250 if ($out_partial > 0) {
|
|
1251 open (ITS2PARTIAL, ">$output.ITS2.full_and_partial.fasta");
|
|
1252 }
|
|
1253 }
|
|
1254 if ($out_concat == 1) { # If concatenated output should be written
|
|
1255 open (CONCAT, ">$output.concat.fasta");
|
|
1256 }
|
|
1257
|
|
1258 undef @sortedHits; # Empty the array of sorted hits
|
|
1259
|
|
1260 # @sortedHits = sort @allHits; # Sort the full list of hits in alphabetical order (to be able to analyse all sequences with same ID at once)
|
|
1261 if ($out_not == 1) { # If not-found output is on
|
|
1262 open (NOTFOUND, ">$output\_no_detections.txt"); # Create a not-found output file
|
|
1263 $noDetect = 0;
|
|
1264 }
|
|
1265 foreach $sequenceID (@sequenceOrder) { # Sort the full list of hits in their original order (to be able to analyse all sequences with same ID at once)
|
|
1266 if ($sequenceID ne "") {
|
|
1267 $countsInList = 0;
|
|
1268 if (exists($allHits{$sequenceID})) {
|
|
1269 @allHits = split('\n',$allHits{$sequenceID});
|
|
1270 } else {
|
|
1271 undef @allHits;
|
|
1272 }
|
|
1273 foreach $line (@allHits) {
|
|
1274 @item = split('\t',$line); # Split the line into an array
|
|
1275 if (@item[0] eq $sequenceID) { # If this item corresponds to the current sequence ID
|
|
1276 push(@sortedHits,$line); # Add it to the sorted list of hits
|
|
1277 $countsInList++;
|
|
1278 }
|
|
1279 }
|
|
1280 if ($countsInList == 0) { # If no matches were found
|
|
1281 if ($out_not == 1) { # If not-found output is on
|
|
1282 print NOTFOUND "$sequenceID\n"; # Output the sequence ID
|
|
1283 $noDetect++;
|
|
1284 }
|
|
1285 }
|
|
1286 }
|
|
1287 }
|
|
1288 if ($out_not == 1) { # If not-found output is on
|
|
1289 close (NOTFOUND);
|
|
1290 if ($noDetect == 0) {
|
|
1291 `rm $output\_no_detections.txt 2> /dev/null`;
|
|
1292 }
|
|
1293 }
|
|
1294
|
|
1295 ## Set all counts for different ITS types to zero
|
|
1296 undef @itsCounts;
|
|
1297 $itsChimeric = 0;
|
|
1298 $itsMain = 0;
|
|
1299 $itsCompl = 0;
|
|
1300
|
|
1301 push(@sortedHits,"--END--"); # Add a last item to the sorted list, so that all items are securely saved
|
|
1302 $lc = 1; # Set the line count to one
|
|
1303 foreach $line (@sortedHits) { # Go through the list of found hits
|
|
1304 print RAWOUT "$line\n"; # Write the raw data associated with this hit to the raw data output file
|
|
1305 @item = split('\t',$line); # Split the line into an array
|
|
1306 ## If this sequence ID is the same as the saved ones, then add it, else empty the array sequence ID and save
|
|
1307 if ((@seqID[0] ne @item[0]) && (@item[0] ne "") || ($lc > scalar(@sortedHits))) { # If this sequence ID is not the same as the last one and is non-empty, or if the end of the list has been reached
|
|
1308 ## Save profile-type which is most likely...
|
|
1309 if ($priority eq "sum") { # If the sum-of-scores algorithm should be used to determine the most likely profile-type
|
|
1310 ## Reset variables to unrealisticly high or low values
|
|
1311 $best = 0;
|
|
1312 $bestCount = 0;
|
|
1313 $bestEval = 1000;
|
|
1314 $bestScore = -1000;
|
|
1315 $bestSum = -1000;
|
|
1316
|
|
1317 for ($i = 0; $i < scalar(@seqScoreSum); $i++) { # Go through all sum-of-scores entries
|
|
1318 if (@seqScoreSum[$i] > $bestSum) { # If the current value is larger than the previous top value
|
|
1319 $best = $i; # Set the best value to be the current value
|
|
1320 ## Set all other best variables to those corresponding to the current value
|
|
1321 $bestCount = @seqDomCounts[$i];
|
|
1322 $bestEval = @seqAvgE[$i];
|
|
1323 $bestScore = @seqAvgScore[$i];
|
|
1324 $bestSum = @seqScoreSum[$i];
|
|
1325 }
|
|
1326 if (@seqScoreSum[$i] == $bestSum) { # If the current value is equal to the previous top value
|
|
1327 if (@seqDomCounts[$i] > $bestCount) { # If the current domain count is larger than the previous top domain count
|
|
1328 $best = $i; # Set the best value to be the current value
|
|
1329 ## Set all other best variables to those corresponding to the current value
|
|
1330 $bestCount = @seqDomCounts[$i];
|
|
1331 $bestEval = @seqAvgE[$i];
|
|
1332 $bestScore = @seqAvgScore[$i];
|
|
1333 $bestSum = @seqScoreSum[$i];
|
|
1334 }
|
|
1335 if (@seqDomCounts[$i] == $bestCount) { # If the current domain count is equal to the previous top domain count
|
|
1336 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value
|
|
1337 $best = $i; # Set the best value to be the current value
|
|
1338 ## Set all other best variables to those corresponding to the current value
|
|
1339 $bestCount = @seqDomCounts[$i];
|
|
1340 $bestEval = @seqAvgE[$i];
|
|
1341 $bestScore = @seqAvgScore[$i];
|
|
1342 $bestSum = @seqScoreSum[$i];
|
|
1343 }
|
|
1344 }
|
|
1345 }
|
|
1346 }
|
|
1347 }
|
|
1348 if ($priority eq "domains") { # If the number of found domains should be used to determine the most likely profile-type
|
|
1349 ## Reset variables to unrealisticly high or low values
|
|
1350 $best = 0;
|
|
1351 $bestCount = 0;
|
|
1352 $bestEval = 1000;
|
|
1353 $bestScore = -1000;
|
|
1354
|
|
1355 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain count entries
|
|
1356 if (@seqDomCounts[$i] > $bestCount) { # If the current domain count is larger than the previous top domain count
|
|
1357 $best = $i; # Set the best value to be the current value
|
|
1358 ## Set all other best variables to those corresponding to the current value
|
|
1359 $bestCount = @seqDomCounts[$i];
|
|
1360 $bestEval = @seqAvgE[$i];
|
|
1361 $bestScore = @seqAvgScore[$i];
|
|
1362 }
|
|
1363 if (@seqDomCounts[$i] == $bestCount) { # If the current domain count is equal to the previous top domain count
|
|
1364 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value
|
|
1365 $best = $i; # Set the best value to be the current value
|
|
1366 ## Set all other best variables to those corresponding to the current value
|
|
1367 $bestCount = @seqDomCounts[$i];
|
|
1368 $bestEval = @seqAvgE[$i];
|
|
1369 $bestScore = @seqAvgScore[$i];
|
|
1370 }
|
|
1371 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value
|
|
1372 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score
|
|
1373 $best = $i; # Set the best value to be the current value
|
|
1374 ## Set all other best variables to those corresponding to the current value
|
|
1375 $bestCount = @seqDomCounts[$i];
|
|
1376 $bestEval = @seqAvgE[$i];
|
|
1377 $bestScore = @seqAvgScore[$i];
|
|
1378 }
|
|
1379 }
|
|
1380 }
|
|
1381 }
|
|
1382 }
|
|
1383 if ($priority eq "eval") { # If the average E-value should be used to determine the most likely profile-type
|
|
1384 ## Reset variables to unrealisticly high or low values
|
|
1385 $best = 0;
|
|
1386 $bestCount = 0;
|
|
1387 $bestEval = 1000;
|
|
1388 $bestScore = -1000;
|
|
1389
|
|
1390 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain counts entries
|
|
1391 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value
|
|
1392 $best = $i; # Set the best value to be the current value
|
|
1393 ## Set all other best variables to those corresponding to the current value
|
|
1394 $bestCount = @seqDomCounts[$i];
|
|
1395 $bestEval = @seqAvgE[$i];
|
|
1396 $bestScore = @seqAvgScore[$i];
|
|
1397 }
|
|
1398 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value
|
|
1399 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score
|
|
1400 $best = $i; # Set the best value to be the current value
|
|
1401 ## Set all other best variables to those corresponding to the current value
|
|
1402 $bestCount = @seqDomCounts[$i];
|
|
1403 $bestEval = @seqAvgE[$i];
|
|
1404 $bestScore = @seqAvgScore[$i];
|
|
1405 }
|
|
1406 if (@seqAvgScore[$i] == $bestScore) { # If the current average score is equal to the previous top average score
|
|
1407 if (@seqDomCounts[$i] > $bestCount) { # If the current number of domains is larger than the previous top number of domains
|
|
1408 $best = $i; # Set the best value to be the current value
|
|
1409 ## Set all other best variables to those corresponding to the current value
|
|
1410 $bestCount = @seqDomCounts[$i];
|
|
1411 $bestEval = @seqAvgE[$i];
|
|
1412 $bestScore = @seqAvgScore[$i];
|
|
1413 }
|
|
1414 }
|
|
1415 }
|
|
1416 }
|
|
1417 }
|
|
1418 if ($priority eq "score") { # If the average score should be used to determine the most likely profile-type
|
|
1419 ## Reset variables to unrealisticly high or low values
|
|
1420 $best = 0;
|
|
1421 $bestCount = 0;
|
|
1422 $bestEval = 1000;
|
|
1423 $bestScore = -1000;
|
|
1424
|
|
1425 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain counts entries
|
|
1426 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score
|
|
1427 $best = $i; # Set the best value to be the current value
|
|
1428 ## Set all other best variables to those corresponding to the current value
|
|
1429 $bestCount = @seqDomCounts[$i];
|
|
1430 $bestEval = @seqAvgE[$i];
|
|
1431 $bestScore = @seqAvgScore[$i];
|
|
1432 }
|
|
1433 if (@seqAvgScore[$i] == $bestScore) { # If the current average score is equal to the previous top average score
|
|
1434 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value
|
|
1435 $best = $i; # Set the best value to be the current value
|
|
1436 ## Set all other best variables to those corresponding to the current value
|
|
1437 $bestCount = @seqDomCounts[$i];
|
|
1438 $bestEval = @seqAvgE[$i];
|
|
1439 $bestScore = @seqAvgScore[$i];
|
|
1440 }
|
|
1441 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value
|
|
1442 if (@seqDomCounts[$i] > $bestCount) { # If the current number of domains is larger than the previous top number of domains
|
|
1443 $best = $i; # Set the best value to be the current value
|
|
1444 ## Set all other best variables to those corresponding to the current value
|
|
1445 $bestCount = @seqDomCounts[$i];
|
|
1446 $bestEval = @seqAvgE[$i];
|
|
1447 $bestScore = @seqAvgScore[$i];
|
|
1448 }
|
|
1449 }
|
|
1450 }
|
|
1451 }
|
|
1452 }
|
|
1453
|
|
1454 if (@seqID[$best] ne "") { # If the sequence ID of the most likely profile is not empty
|
|
1455
|
|
1456 $allanchorLens = @anchorLens[$best]; # Get the best anchor lengths
|
|
1457 @allanchorLens = split(',', $allanchorLens); # Split the anchor lens into an array
|
|
1458
|
|
1459 $chimeric = 0; # Assume the sequence is not chimeric
|
|
1460 if ($allow_reorder == 0) { # If re-order of domain is not allowed
|
|
1461 $domain_order = @allSeqDomains[$best]; # Gather the order the domains are found in
|
|
1462 @domain_order = split(' ',$domain_order); # Split the list into an array
|
|
1463 @sorted_domain_order = sort {$a cmp $b} @domain_order; # Sort the array alphabetically
|
|
1464 for ($di = 0; $di <= scalar(@domain_order); $di++) { # Go through the sorted array
|
|
1465 if ((@domain_order[$di] ne @sorted_domain_order[$di]) || (@problemCode[$best] =~ m/C/)) { # Check if the order of the arrays differ at any poiny
|
|
1466 $chimeric = 1; # If they do differ, mark the sequence as chimeric
|
|
1467 }
|
|
1468 }
|
|
1469 }
|
|
1470
|
|
1471 $seqDNALength = length(@seqDNA[$best]); # Get the length of the DNA sequence
|
|
1472
|
|
1473 ## Print sequence and match data...
|
|
1474 ## Order of columns in the output file:
|
|
1475 ## ID Length Type Main/Compl Domains Avg.Eval Avg.Score Start End Start_domain End_domain Chimeric
|
|
1476 if ($out_results == 1) {
|
|
1477 print RESULTS @seqID[$best] . "\t" . $seqDNALength . "\t" . @seqITSType[$best] . "\t" . @seqCompl[$best] . "\t" . @seqDomCounts[$best] . "\t" . @seqAvgE[$best] . "\t" . @seqAvgScore[$best] . "\t" . @seqScoreSum[$best] . "\t" . @dnaStart[$best] . "\t" . @dnaEnd[$best] . "\t" . @startDomain[$best] . "\t" . @endDomain[$best] . "\t"; # Print sequence and match data to the results file
|
|
1478 if ($chimeric == 1) { # If the sequence was regarded chimeric
|
|
1479 print RESULTS "Chimeric\t"; # Add a chimeric tag to the entry
|
|
1480 } else { # If not chimeric
|
|
1481 print RESULTS "\t"; # Add an empty column
|
|
1482 }
|
|
1483 $allDomains = @allSeqDomains[$best]; # Get the domain order of the entry
|
|
1484 $allDomains =~ tr/ /,/; # Replace spaces with commas in the domain order string
|
|
1485 $allDomains = substr($allDomains,0,length($allDomains) - 1); # Remove the last character (a comma)
|
|
1486 print RESULTS $allDomains; # Write the domain order to the results file
|
|
1487 print RESULTS "\t"; # Write a tab to the results file
|
|
1488 }
|
|
1489
|
|
1490 if ($out_pos == 1) {
|
|
1491 $out_all_pos = 1;
|
|
1492 if ($out_all_pos == 1) { # Output positions of all domains
|
|
1493 $seqPartLen = @dnaEnd[$best] - @dnaStart[$best] + 1;
|
|
1494 if ($seqPartLen < 0) {
|
|
1495 $seqPartLen = $seqPartLen * -1;
|
|
1496 }
|
|
1497 ## Print the positions of all identified domains to the position file
|
|
1498 print POS @seqID[$best] . "\t" . $seqDNALength . " bp." . "\t";
|
|
1499 if (@problemCode[$best] !~ m/S/) {
|
|
1500 print POS "SSU: " . @ssuStart[$best] . "-" . @ssuEnd[$best] . "\t";
|
|
1501 } else {
|
|
1502 print POS "SSU: Not found\t";
|
|
1503 }
|
|
1504 if ((@problemCode[$best] =~ m/X/) || ((@problemCode[$best] =~ m/[15]/) && (@problemCode[$best] =~ m/S/))) {
|
|
1505 print POS "ITS1: Not found\t";
|
|
1506 } else {
|
|
1507 if (@problemCode[$best] =~ m/O/) {
|
|
1508 print POS "ITS1: " . (@ssuEnd[$best] + 1) . "-" . (@ssuEnd[$best] + 1) . "\t";
|
|
1509 } else {
|
|
1510 print POS "ITS1: " . @its1Start[$best] . "-" . @its1End[$best] . "\t";
|
|
1511 }
|
|
1512 }
|
|
1513 if (@problemCode[$best] !~ m/[125OP]/) {
|
|
1514 print POS "5.8S: " . @midStart[$best] . "-" . @midEnd[$best] . "\t";
|
|
1515 } else {
|
|
1516 if (@problemCode[$best] =~ m/5/) {
|
|
1517 print POS "5.8S: Not found\t";
|
|
1518 } else {
|
|
1519 if (@problemCode[$best] =~ m/1/) {
|
|
1520 print POS "5.8S: No start\t";
|
|
1521 } else {
|
|
1522 if (@problemCode[$best] =~ m/O/) {
|
|
1523 print POS "5.8S: Overlap SSU\t";
|
|
1524 } else {
|
|
1525 if (@problemCode[$best] =~ m/P/) {
|
|
1526 print POS "5.8S: Overlap LSU\t";
|
|
1527 } else {
|
|
1528 print POS "5.8S: No end\t";
|
|
1529 }
|
|
1530 }
|
|
1531 }
|
|
1532 }
|
|
1533 }
|
|
1534 if ((@problemCode[$best] =~ m/Y/) ||((@problemCode[$best] =~ m/[25]/) && (@problemCode[$best] =~ m/L/))) {
|
|
1535 print POS "ITS2: Not found\t";
|
|
1536 } else {
|
|
1537 if (@problemCode[$best] =~ m/O/) {
|
|
1538 print POS "ITS2: " . (@lsuStart[$best] - 1) . "-" . (@lsuStart[$best] - 1) . "\t";
|
|
1539 } else {
|
|
1540 print POS "ITS2: " . @its2Start[$best] . "-" . @its2End[$best] . "\t";
|
|
1541 }
|
|
1542 }
|
|
1543 if (@problemCode[$best] !~ m/L/) {
|
|
1544 print POS "LSU: " . @lsuStart[$best] . "-" . @lsuEnd[$best] . "\t";
|
|
1545 } else {
|
|
1546 print POS "LSU: Not found" . "\t";
|
|
1547 }
|
|
1548
|
|
1549 if (@problemCode[$best] =~ m/5/) {
|
|
1550 print POS "Broken or partial sequence, no 5.8S! ";
|
|
1551 } else {
|
|
1552 if (@problemCode[$best] =~ m/[12]/) {
|
|
1553 print POS "Broken or partial sequence, only partial 5.8S! ";
|
|
1554 }
|
|
1555 }
|
|
1556 if (@problemCode[$best] =~ m/B/) {
|
|
1557 print POS "ITS region too long! ";
|
|
1558 }
|
|
1559 if (@problemCode[$best] =~ m/O/) {
|
|
1560 print POS "5.8S seem to overlap with SSU! ";
|
|
1561 }
|
|
1562 if (@problemCode[$best] =~ m/P/) {
|
|
1563 print POS "5.8S seem to overlap with LSU! ";
|
|
1564 }
|
|
1565 if (@problemCode[$best] =~ m/C/) {
|
|
1566 print POS "Chimeric! ";
|
|
1567 }
|
|
1568 print POS "\n";
|
|
1569
|
|
1570 } else { # Output only ITS positions
|
|
1571 $seqPartLen = @dnaEnd[$best] - @dnaStart[$best] + 1;
|
|
1572 print POS @seqID[$best] . "\t" . $seqDNALength . " bp." . "\t" . "ITS1: " . @its1Start[$best] . "-" . @its1End[$best] . "\t" . "ITS2: " . @its2Start[$best] . "-" . @its2End[$best] . "\n"; # Print the positions of the ITS sequences to the position file
|
|
1573 }
|
|
1574 }
|
|
1575
|
|
1576 if (@problem[$best] ne "") {
|
|
1577 $foundProblem++;
|
|
1578 print PROBLEM @seqID[$best] . "\t" . @problem[$best] . "\n";
|
|
1579 }
|
|
1580
|
|
1581 ## Set extended type string (the string going into the definition line of the FASTA file)
|
|
1582 $extendedType = $profileIndex{@seqITSType[$best]} . " ITS sequence";
|
|
1583 @itsCounts[ord(@seqITSType[$best])]++; # Add one ITS to the appropriate counter
|
|
1584
|
|
1585 if (@seqCompl[$best] == 1) { # If domains were found on complementary strand
|
|
1586 $extendedStrand = "complementary strand"; # Set the strand string to complementary
|
|
1587 $itsCompl++; # Add one to the complementary strand counter
|
|
1588 } else { # If domains were found on the main strand
|
|
1589 $extendedStrand = "main strand"; # Set the strand string to main
|
|
1590 $itsMain++; # Add one to the main strand counter
|
|
1591 }
|
|
1592
|
|
1593 ## Print (extracted) ITS sequence...
|
|
1594 if ($out_fasta == 1) { # If FASTA-output is on
|
|
1595 if ($truncate == 0) { # If the whole sequence should be kept in output file
|
|
1596 if ($chimeric == 0) { # If the sequence is not chimeric
|
|
1597 if (@problemCode[$best] !~ m/[SL]/) {
|
|
1598 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1599 print FASTA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1600 } else {
|
|
1601 print FASTA ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line
|
|
1602 }
|
|
1603 print FASTA @seqDNA[$best] . "\n"; # Write DNA sequence
|
|
1604 }
|
|
1605 if ($out_partial > 0) {
|
|
1606 if (@problemCode[$best] !~ m/[SL125]/) {
|
|
1607 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1608 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1609 } else {
|
|
1610 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Full ITS region on " . $extendedStrand . "\n"; # Write FASTA defline
|
|
1611 }
|
|
1612 print FULLPARTIAL @seqDNA[$best] . "\n"; # Write DNA sequence
|
|
1613 } else {
|
|
1614 $its1PartLen = @its1End[$best] - @its1Start[$best] + 1;
|
|
1615 $its2PartLen = @its2End[$best] - @its2Start[$best] + 1;
|
|
1616 if (($out_partial < $its1PartLen) && ($out_partial < $its2PartLen)) {
|
|
1617 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1618 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1619 } else {
|
|
1620 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Partial ITS region on " . $extendedStrand . "\n"; # Write FASTA defline
|
|
1621 }
|
|
1622 print FULLPARTIAL @seqDNA[$best] . "\n"; # Write DNA sequence
|
|
1623 }
|
|
1624 }
|
|
1625 }
|
|
1626 } else { # If sequence is regarded chimeric
|
|
1627 $itsChimeric++; # Add one to the chimeric counter
|
|
1628 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1629 print CHIMERA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1630 } else {
|
|
1631 print CHIMERA ">" . @seqID[$best] . "|" . @seqITSType[$best] ." Chimeric " . $extendedType . " (" . length(@seqDNA[$best]) . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line
|
|
1632 }
|
|
1633 print CHIMERA @seqDNA[$best] . "\n"; # Write DNA sequence
|
|
1634 $foundChimera++;
|
|
1635 }
|
|
1636 } else { # If only the ITS part of the sequence should be saved to output file
|
|
1637 $fastaStartPoint = @dnaStart[$best] - 1; # Start extraction at the start of the first domain
|
|
1638 $fastaEndPoint = @dnaEnd[$best]+10; # End extraction 10 bp after the last domain
|
|
1639
|
|
1640 if (@seqDomCounts[$best] > 1) { # If more than one domain was found
|
|
1641 if (substr(@startDomain[$best],0,5) eq "1_SSU") { # If the first domain was SSU
|
|
1642 $fastaStartPoint = @ssuEnd[$best]; # Set the start point of the extraction to the end of the SSU domain
|
|
1643 }
|
|
1644 if (substr(@startDomain[$best],0,5) eq "4_LSU") { # If the first domain was LSU
|
|
1645 $fastaStartPoint = @lsuEnd[$best]; # Set the start point of the extraction to the end of the LSU domain
|
|
1646 }
|
|
1647 if (substr(@endDomain[$best],0,5) eq "1_SSU") { # If the last domain was SSU
|
|
1648 $fastaEndPoint = @ssuStart[$best] - 1; # Set the end point of the extraction to the start of the SSU domain
|
|
1649 }
|
|
1650 if (substr(@endDomain[$best],0,5) eq "4_LSU") { # If the last domain was LSU
|
|
1651 $fastaEndPoint = @lsuStart[$best] - 1; # Set the end point of the extraction to the start of the LSU domain
|
|
1652 }
|
|
1653 }
|
|
1654
|
|
1655 if ($fastaStartPoint < 0) { # If the start point is smaller than zero, set the start point to zero
|
|
1656 $fastaStartPoint = 0;
|
|
1657 }
|
|
1658 if ($fastaEndPoint > length(@seqDNA[$best])) { # If the end point is larger than the length of the sequence, set the end point to the sequence end
|
|
1659 $fastaEndPoint = length(@seqDNA[$best]);
|
|
1660 }
|
|
1661
|
|
1662 $fastaLength = $fastaEndPoint - $fastaStartPoint + 1;
|
|
1663
|
|
1664 if ($chimeric == 0) { # If the sequence is not chimeric
|
|
1665 if (@problemCode[$best] !~ m/[SL]/) {
|
|
1666 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1667 print FASTA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1668 } else {
|
|
1669 print FASTA ">" . @seqID[$best] . "|" . @seqITSType[$best] . " " . $extendedType . " (" . $fastaLength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line
|
|
1670 }
|
|
1671 if ($anchorLen > 0) {
|
|
1672 if ($fastaStartPoint - @allanchorLens[0] > 0) {
|
|
1673 print FASTA substr(@seqDNA[$best],$fastaStartPoint - @allanchorLens[0],$fastaLength + @allanchorLens[0] + @allanchorLens[3]) . "\n"; # Write DNA sequence
|
|
1674 } else {
|
|
1675 print FASTA substr(@seqDNA[$best],0,$fastaLength + $fastaStartPoint + @allanchorLens[3]) . "\n"; # Write DNA sequence
|
|
1676 }
|
|
1677 } else {
|
|
1678 print FASTA substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence
|
|
1679 }
|
|
1680 }
|
|
1681 if ($out_partial > 0) {
|
|
1682 if (@problemCode[$best] !~ m/[SL125]/) {
|
|
1683 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1684 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1685 } else {
|
|
1686 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Full ITS region on " . $extendedStrand . "\n"; # Write FASTA defline
|
|
1687 }
|
|
1688 print FULLPARTIAL substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence
|
|
1689 } else {
|
|
1690 $its1PartLen = @its1End[$best] - @its1Start[$best] + 1;
|
|
1691 $its2PartLen = @its2End[$best] - @its2Start[$best] + 1;
|
|
1692 if (($out_partial < $its1PartLen) && ($out_partial < $its2PartLen)) {
|
|
1693 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1694 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1695 } else {
|
|
1696 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Partial ITS region on " . $extendedStrand . "\n"; # Write FASTA defline
|
|
1697 }
|
|
1698 print FULLPARTIAL substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence
|
|
1699 }
|
|
1700 }
|
|
1701 }
|
|
1702 } else { # If sequence is regarded chimeric
|
|
1703 $itsChimeric++; # Add one to the chimeric counter
|
|
1704 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1705 print CHIMERA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1706 } else {
|
|
1707 print CHIMERA ">" . @seqID[$best] . "|" . @seqITSType[$best] . " Chimeric " . $extendedType . " (" . $fastaLength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line
|
|
1708 }
|
|
1709 print CHIMERA @seqDNA[$best] . "\n"; # Write DNA sequence
|
|
1710 $foundChimera++;
|
|
1711 }
|
|
1712 }
|
|
1713 }
|
|
1714
|
|
1715 if ($out_joined == 1) {
|
|
1716 if ($chimeric == 0) { # If the sequence is not chimeric
|
|
1717 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1718 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1719 } else {
|
|
1720 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . " " . $extendedType . " (" . $fastaLength . " bp) From domain " . @startDomain[$best] . " to " . @endDomain[$best] . " on " . $extendedStrand . " Found domains: "; # Write FASTA definition line
|
|
1721 print JOINED substr(@allSeqDomains[$best],0,length(@allSeqDomains[$best]) - 1) . "\n"; # Write domain order
|
|
1722 }
|
|
1723 print JOINED substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence
|
|
1724 } else { # If sequence is regarded chimeric
|
|
1725 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1726 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1727 } else {
|
|
1728 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . " Chimeric " . $extendedType . " (" . $fastaLength . " bp) From domain " . @startDomain[$best] . " to " . @endDomain[$best] . " on " . $extendedStrand . " Found domains: "; # Write FASTA definition line
|
|
1729 print JOINED substr(@allSeqDomains[$best],0,length(@allSeqDomains[$best]) - 1) . "\n"; # Write domain order
|
|
1730 }
|
|
1731 print JOINED substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence
|
|
1732 }
|
|
1733 }
|
|
1734
|
|
1735 ## Write SSU sequence to file
|
|
1736 if ($out_ssu == 1) { # If SSU output is on
|
|
1737 if (@problemCode[$best] !~ m/S/) {
|
|
1738 if ($only_full == 0) {
|
|
1739 $seqPartLen = @ssuEnd[$best] - @ssuStart[$best] + 1;
|
|
1740 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1741 print SSU $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1742 } else {
|
|
1743 print SSU ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|SSU " . "Extracted SSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1744 }
|
|
1745 if (uc($anchor) ne "HMM") {
|
|
1746 if (@ssuStart[$best] - 1 - $anchorLen > 0) {
|
|
1747 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1 - $anchorLen, $anchorLen);
|
|
1748 } else {
|
|
1749 print SSU substr(@seqDNA[$best], 0, @ssuStart[$best] - 1);
|
|
1750 }
|
|
1751 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1);
|
|
1752 if (@ssuEnd[$best] - @ssuStart[$best] + 1 - $anchorLen > 0) {
|
|
1753 print SSU substr(@seqDNA[$best], @ssuEnd[$best], $anchorLen);
|
|
1754 } else {
|
|
1755 print SSU substr(@seqDNA[$best], @ssuEnd[$best]);
|
|
1756 }
|
|
1757 } else {
|
|
1758 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1);
|
|
1759 }
|
|
1760 print SSU "\n"; # Write DNA sequence
|
|
1761 }
|
|
1762 }
|
|
1763 }
|
|
1764
|
|
1765 ## Write LSU sequence to file
|
|
1766 if ($out_lsu == 1) { # If LSU output is on
|
|
1767 if ($only_full == 0) {
|
|
1768 if (@problemCode[$best] !~ m/L/) {
|
|
1769 $seqPartLen = @lsuEnd[$best] - @lsuStart[$best] + 1;
|
|
1770 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1771 print LSU $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1772 } else {
|
|
1773 print LSU ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|LSU " . "Extracted LSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1774 }
|
|
1775 if (uc($anchor) ne "HMM") {
|
|
1776 if (@lsuStart[$best] - 1 - $anchorLen > 0) {
|
|
1777 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1 - $anchorLen, $anchorLen);
|
|
1778 } else {
|
|
1779 print LSU substr(@seqDNA[$best], 0, @lsuStart[$best] - 1);
|
|
1780 }
|
|
1781 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1);
|
|
1782 #if (@lsuEnd[$best] - @lsuStart[$best] + 1 - $anchorLen > 0) {
|
|
1783 # print LSU substr(@seqDNA[$best], @lsuEnd[$best] - @lsuStart[$best] + 1, $anchorLen);
|
|
1784 #} else {
|
|
1785 # print LSU substr(@seqDNA[$best], @lsuEnd[$best] - @lsuStart[$best] + 1);
|
|
1786 #}
|
|
1787 } else {
|
|
1788 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1);
|
|
1789 }
|
|
1790 print LSU "\n"; # Write DNA sequence
|
|
1791 }
|
|
1792 }
|
|
1793 }
|
|
1794
|
|
1795 ## Write 5.8S sequence to file
|
|
1796 if ($out_58S == 1) { # If 5.8S output is on
|
|
1797 if (@problemCode[$best] !~ m/[125]/) {
|
|
1798 $seqPartLen = @midEnd[$best] - @midStart[$best] + 1;
|
|
1799 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1800 print MID $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1801 } else {
|
|
1802 print MID ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|5.8S " . "Extracted 5.8S sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1803 }
|
|
1804 if (uc($anchor) ne "HMM") {
|
|
1805 if (@midStart[$best] - 1 - $anchorLen > 0) {
|
|
1806 print MID substr(@seqDNA[$best], @midStart[$best] - 1 - $anchorLen, $anchorLen);
|
|
1807 } else {
|
|
1808 print MID substr(@seqDNA[$best], 0, @midStart[$best] - 1);
|
|
1809 }
|
|
1810 print MID substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1);
|
|
1811 if (@midEnd[$best] - @midStart[$best] + 1 - $anchorLen > 0) {
|
|
1812 print MID substr(@seqDNA[$best], @midEnd[$best], $anchorLen);
|
|
1813 } else {
|
|
1814 print MID substr(@seqDNA[$best], @midEnd[$best]);
|
|
1815 }
|
|
1816 } else {
|
|
1817 print MID substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1);
|
|
1818 }
|
|
1819 print MID "\n"; # Write DNA sequence
|
|
1820 }
|
|
1821 }
|
|
1822
|
|
1823 ## Write ITS1 sequence to file
|
|
1824 if ($out_its1 == 1) { # If ITS1 output is on
|
|
1825 $seqPartLen = @its1End[$best] - @its1Start[$best] + 1;
|
|
1826 if ($seqPartLen > 1) {
|
|
1827 if ( (($only_full == 0) && (@problemCode[$best] !~ m/[15]/)) || (($only_full == 1) && (@problemCode[$best] !~ m/[S15]/))) {
|
|
1828 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1829 print ITS1 $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1830 } else {
|
|
1831 print ITS1 ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1832 }
|
|
1833 if (uc($anchor) ne "HMM") {
|
|
1834 if (@its1Start[$best] - 1 - $anchorLen > 0) {
|
|
1835 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
1836 } else {
|
|
1837 print ITS1 substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1838 }
|
|
1839 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1840 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) {
|
|
1841 print ITS1 substr(@seqDNA[$best], @its1End[$best], $anchorLen);
|
|
1842 } else {
|
|
1843 print ITS1 substr(@seqDNA[$best], @its1End[$best]);
|
|
1844 }
|
|
1845 } else {
|
|
1846 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) {
|
|
1847 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]);
|
|
1848 } else {
|
|
1849 print ITS1 substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1850 }
|
|
1851 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1852 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) {
|
|
1853 print ITS1 substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]);
|
|
1854 } else {
|
|
1855 print ITS1 substr(@seqDNA[$best], @its1End[$best]);
|
|
1856 }
|
|
1857
|
|
1858 }
|
|
1859 print ITS1 "\n"; # Write DNA sequence
|
|
1860 }
|
|
1861 }
|
|
1862 if ($out_partial > 0) {
|
|
1863 if (@problemCode[$best] !~ m/[S15]/) {
|
|
1864 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1865 print ITS1PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1866 } else {
|
|
1867 print ITS1PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted Full ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1868 }
|
|
1869 if (uc($anchor) ne "HMM") {
|
|
1870 if (@its1Start[$best] - 1 - $anchorLen > 0) {
|
|
1871 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
1872 } else {
|
|
1873 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1874 }
|
|
1875 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1876 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) {
|
|
1877 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], $anchorLen);
|
|
1878 } else {
|
|
1879 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]);
|
|
1880 }
|
|
1881 } else {
|
|
1882 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) {
|
|
1883 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]);
|
|
1884 } else {
|
|
1885 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1886 }
|
|
1887 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1888 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) {
|
|
1889 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]);
|
|
1890 } else {
|
|
1891 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]);
|
|
1892 }
|
|
1893
|
|
1894 }
|
|
1895 print ITS1PARTIAL "\n"; # Write DNA sequence
|
|
1896 } else {
|
|
1897 if ($out_partial < $seqPartLen) {
|
|
1898 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1899 print ITS1PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1900 } else {
|
|
1901 print ITS1PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted Partial ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1902 }
|
|
1903 if (uc($anchor) ne "HMM") {
|
|
1904 if (@its1Start[$best] - 1 - $anchorLen > 0) {
|
|
1905 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
1906 } else {
|
|
1907 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1908 }
|
|
1909 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1910 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) {
|
|
1911 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], $anchorLen);
|
|
1912 } else {
|
|
1913 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]);
|
|
1914 }
|
|
1915 } else {
|
|
1916 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) {
|
|
1917 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]);
|
|
1918 } else {
|
|
1919 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1);
|
|
1920 }
|
|
1921 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1);
|
|
1922 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) {
|
|
1923 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]);
|
|
1924 } else {
|
|
1925 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]);
|
|
1926 }
|
|
1927 }
|
|
1928 print ITS1PARTIAL "\n"; # Write DNA sequence
|
|
1929 }
|
|
1930 }
|
|
1931 }
|
|
1932 }
|
|
1933
|
|
1934 ## Write ITS2 sequence to file
|
|
1935 if ($out_its2 == 1) { # If ITS2 output is on
|
|
1936 $seqPartLen = @its2End[$best] - @its2Start[$best] + 1;
|
|
1937 if ($seqPartLen > 1) {
|
|
1938 if ( (($only_full == 0) && (@problemCode[$best] !~ m/[25]/)) || (($only_full == 1) && (@problemCode[$best] !~ m/[L25]/))) {
|
|
1939 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1940 print ITS2 $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1941 } else {
|
|
1942 print ITS2 ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1943 }
|
|
1944 if (uc($anchor) ne "HMM") {
|
|
1945 if (@its2Start[$best] - 1 - $anchorLen > 0) {
|
|
1946 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
1947 } else {
|
|
1948 print ITS2 substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
1949 }
|
|
1950 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
1951 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) {
|
|
1952 print ITS2 substr(@seqDNA[$best], @its2End[$best], $anchorLen);
|
|
1953 } else {
|
|
1954 print ITS2 substr(@seqDNA[$best], @its2End[$best]);
|
|
1955 }
|
|
1956 } else {
|
|
1957 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) {
|
|
1958 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]);
|
|
1959 } else {
|
|
1960 print ITS2 substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
1961 }
|
|
1962 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
1963 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) {
|
|
1964 print ITS2 substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]);
|
|
1965 } else {
|
|
1966 print ITS2 substr(@seqDNA[$best], @its2End[$best]);
|
|
1967 }
|
|
1968 }
|
|
1969 print ITS2 "\n"; # Write DNA sequence
|
|
1970 }
|
|
1971 if ($out_partial > 0) {
|
|
1972 if (@problemCode[$best] !~ m/[L25]/) {
|
|
1973 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
1974 print ITS2PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
1975 } else {
|
|
1976 print ITS2PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted Full ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
1977 }
|
|
1978 if (uc($anchor) ne "HMM") {
|
|
1979 if (@its2Start[$best] - 1 - $anchorLen > 0) {
|
|
1980 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
1981 } else {
|
|
1982 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
1983 }
|
|
1984 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
1985 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) {
|
|
1986 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], $anchorLen);
|
|
1987 } else {
|
|
1988 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]);
|
|
1989 }
|
|
1990 } else {
|
|
1991 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) {
|
|
1992 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]);
|
|
1993 } else {
|
|
1994 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
1995 }
|
|
1996 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
1997 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) {
|
|
1998 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]);
|
|
1999 } else {
|
|
2000 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]);
|
|
2001 }
|
|
2002 }
|
|
2003 print ITS2PARTIAL "\n"; # Write DNA sequence
|
|
2004 } else {
|
|
2005 if ($out_partial < $seqPartLen) {
|
|
2006 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2007 print ITS2PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2008 } else {
|
|
2009 print ITS2PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted Partial ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2010 }
|
|
2011 if (uc($anchor) ne "HMM") {
|
|
2012 if (@its2Start[$best] - 1 - $anchorLen > 0) {
|
|
2013 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen);
|
|
2014 } else {
|
|
2015 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
2016 }
|
|
2017 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
2018 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) {
|
|
2019 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], $anchorLen);
|
|
2020 } else {
|
|
2021 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]);
|
|
2022 }
|
|
2023 } else {
|
|
2024 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) {
|
|
2025 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]);
|
|
2026 } else {
|
|
2027 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1);
|
|
2028 }
|
|
2029 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1);
|
|
2030 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) {
|
|
2031 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]);
|
|
2032 } else {
|
|
2033 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]);
|
|
2034 }
|
|
2035 }
|
|
2036 print ITS2PARTIAL "\n"; # Write DNA sequence
|
|
2037 }
|
|
2038 }
|
|
2039 }
|
|
2040 }
|
|
2041 }
|
|
2042
|
|
2043 ## Output concatenated ITS1 + ITS2 sequences
|
|
2044 if ($out_concat == 1) {
|
|
2045 $seqPartLen1 = @its1End[$best] - @its1Start[$best] + 1;
|
|
2046 $seqPartLen2 = @its2End[$best] - @its2Start[$best] + 1;
|
|
2047 if (($seqPartLen1 >= $concat_minlen) && ($seqPartLen2 >= $concat_minlen)) {
|
|
2048 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2049 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2050 } else {
|
|
2051 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1+2 " . "Concatenated ITS1 and ITS2 sequences (" . ($seqPartLen1 + $seqPartLen2) . " bp)\n"; # Write FASTA definition line
|
|
2052 }
|
|
2053 print CONCAT substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); # Write ITS1 DNA sequence
|
|
2054 print CONCAT "-----"; # Write spacer
|
|
2055 print CONCAT substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); # Write ITS2 DNA sequence
|
|
2056 print CONCAT "\n"; # Write newline
|
|
2057 } else {
|
|
2058 if ($seqPartLen1 >= $concat_minlen) {
|
|
2059 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2060 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2061 } else {
|
|
2062 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "ITS1 sequence (ITS2 too short) (" . $seqPartLen1 . " bp)\n"; # Write FASTA definition line
|
|
2063 }
|
|
2064 print CONCAT substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); # Write ITS1 DNA sequence
|
|
2065 print CONCAT "-----"; # Write spacer
|
|
2066 print CONCAT "\n"; # Write newline
|
|
2067 }
|
|
2068 if ($seqPartLen2 >= $concat_minlen) {
|
|
2069 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2070 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2071 } else {
|
|
2072 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "ITS2 sequence (ITS1 too short) (" . $seqPartLen2 . " bp)\n"; # Write FASTA definition line
|
|
2073 }
|
|
2074 print CONCAT "-----"; # Write spacer
|
|
2075 print CONCAT substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); # Write ITS2 DNA sequence
|
|
2076 print CONCAT "\n"; # Write newline
|
|
2077 }
|
|
2078 }
|
|
2079 }
|
|
2080
|
|
2081 ## Print all sequences to the joined file for debugging
|
|
2082 if ($out_joined == 1) {
|
|
2083 $seqPartLen = @ssuEnd[$best] - @ssuStart[$best] + 1;
|
|
2084 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2085 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2086 } else {
|
|
2087 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|SSU " . "Extracted SSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2088 }
|
|
2089 print JOINED substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1) . "\n"; # Write DNA sequence
|
|
2090
|
|
2091 $seqPartLen = @its1End[$best] - @its1Start[$best] + 1;
|
|
2092 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2093 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2094 } else {
|
|
2095 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2096 }
|
|
2097 print JOINED substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1) . "\n"; # Write DNA sequence
|
|
2098
|
|
2099 $seqPartLen = @midEnd[$best] - @midStart[$best] + 1;
|
|
2100 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2101 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2102 } else {
|
|
2103 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|5.8S " . "Extracted 5.8S sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2104 }
|
|
2105 print JOINED substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1) . "\n"; # Write DNA sequence
|
|
2106
|
|
2107 $seqPartLen = @its2End[$best] - @its2Start[$best] + 1;
|
|
2108 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2109 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2110 } else {
|
|
2111 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted ITS2 sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2112 }
|
|
2113 print JOINED substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1) . "\n"; # Write DNA sequence
|
|
2114
|
|
2115 $seqPartLen = @lsuEnd[$best] - @lsuStart[$best] + 1;
|
|
2116 if ($out_preserve == 1) { # If sequence headers should be preserved
|
|
2117 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line
|
|
2118 } else {
|
|
2119 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|LSU " . "Extracted LSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line
|
|
2120 }
|
|
2121 print JOINED substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1) . "\n"; # Write DNA sequence
|
|
2122 }
|
|
2123
|
|
2124
|
|
2125 if ($out_results == 1) {
|
|
2126 ## Print info on all matches, also not top ones to the results file...
|
|
2127 for ($i = 0; $i < scalar(@seqITSType); $i++) { # Go through all the possible ITS types...
|
|
2128 print RESULTS @seqITSType[$i] . ": " . @seqDomCounts[$i] . " " . @seqAvgE[$i] . " " . @seqAvgScore[$i]; # Write some info on this type (Type, Domain count, Average E-value, Average score)
|
|
2129 if ($i < scalar(@seqITSType) - 1) { # If this is no the last domain type
|
|
2130 print RESULTS ", "; # Write a comma
|
|
2131 }
|
|
2132 }
|
|
2133 print RESULTS "\n"; # Write end of line
|
|
2134 }
|
|
2135 }
|
|
2136
|
|
2137 ## Undefine all used arrays for the next round...
|
|
2138 undef @seqID;
|
|
2139 undef @seqITSType;
|
|
2140 undef @seqCompl;
|
|
2141 undef @seqDomCounts;
|
|
2142 undef @seqAvgE;
|
|
2143 undef @seqAvgScore;
|
|
2144 undef @seqScoreSum;
|
|
2145 undef @seqDNA;
|
|
2146 undef @allSeqDomains;
|
|
2147 undef @dnaStart;
|
|
2148 undef @dnaEnd;
|
|
2149 undef @ssuStart;
|
|
2150 undef @ssuEnd;
|
|
2151 undef @lsuStart;
|
|
2152 undef @lsuEnd;
|
|
2153 undef @midStart;
|
|
2154 undef @midEnd;
|
|
2155 undef @its1Start;
|
|
2156 undef @its1End;
|
|
2157 undef @its2Start;
|
|
2158 undef @its2End;
|
|
2159 undef @startDomain;
|
|
2160 undef @endDomain;
|
|
2161 undef @domain_order;
|
|
2162 undef @sorted_domain_order;
|
|
2163 undef @problem;
|
|
2164 undef @problemCode;
|
|
2165 undef @anchorLens;
|
|
2166 }
|
|
2167 if (@item[0] ne "") { # Add this entry to the set (regardless if the entry has the same ID as entries already in the set), as long as it is non-empty
|
|
2168 push(@seqID, @item[0]); # Add sequence ID
|
|
2169 push(@seqITSType, @item[1]); # Add ITS type
|
|
2170 push(@seqCompl, @item[2]); # Add main/complementary strand info
|
|
2171 push(@seqDomCounts, @item[3]); # Add domain count
|
|
2172 push(@seqAvgE, @item[4]); # Add average E-value
|
|
2173 push(@seqAvgScore, @item[5]); # Add average score
|
|
2174 push(@seqScoreSum, @item[6]); # Add sum-of-scores
|
|
2175 push(@seqDNA, @item[7]); # Add DNA sequence
|
|
2176
|
|
2177 ## Determine first and last domains, and their positions
|
|
2178 ## Set variables to unrealistic values
|
|
2179 $dnaEnd = length(@item[7]);
|
|
2180 $startDomain = "***";
|
|
2181 $endDomain = "***";
|
|
2182 $dnaStart = 1;
|
|
2183 $allDomains = "";
|
|
2184 $ssuStart = 1;
|
|
2185 $ssuEnd = 0;
|
|
2186 $midStart = 1;
|
|
2187 $midEnd = 0;
|
|
2188 $lsuStart = 1;
|
|
2189 $lsuEnd = 0;
|
|
2190 $its1Start = 1;
|
|
2191 $its1End = length(@item[7]);
|
|
2192 $its2Start = 1;
|
|
2193 $its2End = length(@item[7]);
|
|
2194 $problem = "";
|
|
2195 $problemCode = "";
|
|
2196
|
|
2197 $ssuFound = 0;
|
|
2198 $lsuFound = 0;
|
|
2199 $midSFound = 0;
|
|
2200 $midEFound = 0;
|
|
2201 $order = "";
|
|
2202 undef @hitanchorlens;
|
|
2203
|
|
2204 for ($i = 8; $i < scalar(@item); $i++) { # Go through the list of found domains in this sequence
|
|
2205 ($hitStart,$hitEnd,$hitProfile,$hitScore,$hitEval,$hitanchorlen) = split(';',@item[$i]); # Separate the hit stats into variables
|
|
2206 $allDomains = $allDomains . $hitProfile . " "; # Add found domain to the list of all domains
|
|
2207
|
|
2208 # if ($hitStart < $dnaStart) { # If this domain is the first one so far
|
|
2209 # $dnaStart = $hitStart; # Set the start of the ITS sequence to this domain's start
|
|
2210 # $startDomain = $hitProfile; # Set this domain as the starting domain
|
|
2211 # }
|
|
2212 # if ($hitEnd > $dnaEnd) { # If this domain is the last one so far
|
|
2213 # $dnaEnd = $hitEnd; # Set the end of the ITS sequence to this domain's end
|
|
2214 # $endDomain = $hitProfile; # Set this domain as the ending domain
|
|
2215 # }
|
|
2216
|
|
2217 if (substr($hitProfile,0,5) eq "1_SSU" ) { # If this domain is the SSU's end
|
|
2218 $dnaStart = $hitStart; # Set the start of the ITS sequence to this domain's start
|
|
2219 $startDomain = $hitProfile; # Set this domain as the starting domain
|
|
2220 $ssuStart = 1; # Set the start of the SSU sequence to the start of the sequence
|
|
2221 $ssuEnd = $hitEnd; # Set the end of the SSU sequence to this domain's end
|
|
2222 $its1Start = $hitEnd + 1; # Set the start of the ITS1 sequence to right after this domain's end
|
|
2223 if ($midEFound == 0) {
|
|
2224 $its2Start = $hitEnd + 1; # Set the end of the ITS2 sequence to right after this domain's end
|
|
2225 }
|
|
2226 $ssuFound = 1;
|
|
2227 $order = $order . "1";
|
|
2228 @hitanchorlens[1] = $hitanchorlen;
|
|
2229 }
|
|
2230
|
|
2231 if (substr($hitProfile,0,5) eq "2_5.8" ) { # If this domain is the 5.8S's start
|
|
2232 if ($startDomain eq "***") {
|
|
2233 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence
|
|
2234 $startDomain = $hitProfile; # Set this domain as the starting domain
|
|
2235 }
|
|
2236 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start
|
|
2237 if ($midEFound == 0) {
|
|
2238 $its2Start = $hitEnd + 1; # Set the start of the ITS2 sequence to right after this domain's end
|
|
2239 }
|
|
2240 $midStart = $hitStart; # Set the start of the 5.8S sequence to this domain's start
|
|
2241 $midSFound = 1;
|
|
2242 $order = $order . "2";
|
|
2243 @hitanchorlens[2] = $hitanchorlen;
|
|
2244 }
|
|
2245
|
|
2246 if (substr($hitProfile,0,5) eq "3_End" ) { # If this domain is the 5.8S's end
|
|
2247 if ($startDomain eq "***") {
|
|
2248 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence
|
|
2249 $startDomain = $hitProfile; # Set this domain as the starting domain
|
|
2250 }
|
|
2251 if ($midSFound == 0) {
|
|
2252 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start
|
|
2253 }
|
|
2254 $its2Start = $hitEnd + 1; # Set the end of the ITS2 sequence to right after this domain's end
|
|
2255 $midEnd = $hitEnd; # Set the end of the 5.8S sequence to this domain's end
|
|
2256 $midEFound = 1;
|
|
2257 $order = $order . "3";
|
|
2258 @hitanchorlens[3] = $hitanchorlen;
|
|
2259 }
|
|
2260
|
|
2261 if (substr($hitProfile,0,5) eq "4_LSU" ) { # If this domain is the LSU's start
|
|
2262 if ($startDomain eq "***") {
|
|
2263 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence
|
|
2264 $startDomain = $hitProfile; # Set this domain as the starting domain
|
|
2265 }
|
|
2266 $dnaEnd = $hitEnd; # Set the end of the ITS sequence to this domain's end
|
|
2267 $endDomain = $hitProfile; # Set this domain as the ending domain
|
|
2268 $lsuStart = $hitStart; # Set the start of the LSU sequence to the start of the this domain
|
|
2269 $lsuEnd = length(@item[7]); # Set the end of the LSU sequence to the end of the sequence
|
|
2270 $its2End = $hitStart - 1; # Set the end of the ITS2 sequence to right before this domain's start
|
|
2271 if ($midSFound == 0) {
|
|
2272 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start
|
|
2273 }
|
|
2274 $lsuFound = 1;
|
|
2275 $order = $order . "4";
|
|
2276 @hitanchorlens[4] = $hitanchorlen;
|
|
2277 }
|
|
2278 }
|
|
2279
|
|
2280 if ($ssuFound == 0) {
|
|
2281 if ($problem ne "") {
|
|
2282 $problem = $problem . "; ";
|
|
2283 }
|
|
2284 $problem = $problem . "End of SSU sequence not found";
|
|
2285 $problemCode = $problemCode . "S";
|
|
2286 $order = "1" . $order;
|
|
2287 }
|
|
2288
|
|
2289 if ($lsuFound == 0) {
|
|
2290 if ($problem ne "") {
|
|
2291 $problem = $problem . "; ";
|
|
2292 }
|
|
2293 $problem = $problem . "Start of LSU sequence not found";
|
|
2294 $problemCode = $problemCode . "L";
|
|
2295 $order = $order . "4";
|
|
2296 }
|
|
2297
|
|
2298 if (($midSFound == 0) && ($midEFound == 0)) {
|
|
2299 if ($problem ne "") {
|
|
2300 $problem = $problem . "; ";
|
|
2301 }
|
|
2302 $problem = $problem . "The 5.8S sequence was not found at all";
|
|
2303 $problemCode = $problemCode . "5";
|
|
2304 } else {
|
|
2305 if ($midSFound == 0) {
|
|
2306 if ($problem ne "") {
|
|
2307 $problem = $problem . "; ";
|
|
2308 }
|
|
2309 $problem = $problem . "Start of 5.8S sequence not found";
|
|
2310 $problemCode = $problemCode . "1";
|
|
2311 }
|
|
2312 if ($midEFound == 0) {
|
|
2313 if ($problem ne "") {
|
|
2314 $problem = $problem . "; ";
|
|
2315 }
|
|
2316 $problem = $problem . "End of 5.8S sequence not found";
|
|
2317 $problemCode = $problemCode . "2";
|
|
2318 }
|
|
2319 }
|
|
2320
|
|
2321 if ($dnaEnd - $dnaStart > 1500) {
|
|
2322 if ($problem ne "") {
|
|
2323 $problem = $problem . "; ";
|
|
2324 }
|
|
2325 $problem = $problem . "ITS region is suspiciously long (> 1500 bp)";
|
|
2326 $problemCode = $problemCode . "B";
|
|
2327 }
|
|
2328
|
|
2329 if (length($order) == 4) {
|
|
2330 if ($order ne "1234") {
|
|
2331 if ($problem ne "") {
|
|
2332 $problem = $problem . "; ";
|
|
2333 }
|
|
2334 $problem = $problem . "Domains found in wrong order, sequence may be chimeric";
|
|
2335 $problemCode = $problemCode . "C";
|
|
2336 }
|
|
2337 } else {
|
|
2338 if ((substr($order,0,1) ne "1") || (substr($order,-1) ne "4")) {
|
|
2339 if ($problem ne "") {
|
|
2340 $problem = $problem . "; ";
|
|
2341 }
|
|
2342 $problem = $problem . "Domains found in wrong order, sequence may be chimeric";
|
|
2343 $problemCode = $problemCode . "C";
|
|
2344 } else {
|
|
2345 if (($midSFound == 1) && ($midEFound == 1)) {
|
|
2346 if ($order !~ m/23/) {
|
|
2347 if ($problem ne "") {
|
|
2348 $problem = $problem . "; ";
|
|
2349 }
|
|
2350 $problem = $problem . "Domains found in wrong order, sequence may be chimeric";
|
|
2351 $problemCode = $problemCode . "C";
|
|
2352 }
|
|
2353 }
|
|
2354 }
|
|
2355 }
|
|
2356
|
|
2357 if ($its1End - $its1Start < 0) { # 5.8S overlaps SSU
|
|
2358 if (($midSFound == 1) && ($ssuFound == 1)) {
|
|
2359 $problemCode = $problemCode . "OC";
|
|
2360 $its1Start = 0;
|
|
2361 $its1End = 0;
|
|
2362 if ($problem ne "") {
|
|
2363 $problem = $problem . "; ";
|
|
2364 }
|
|
2365 $problem = $problem . "SSU seems to overlap 5.8S, sequence may be chimeric";
|
|
2366 } else {
|
|
2367 $problemCode = $problemCode . "X";
|
|
2368 $its1Start = 0;
|
|
2369 $its1End = 0;
|
|
2370 if ($problem ne "") {
|
|
2371 $problem = $problem . "; ";
|
|
2372 }
|
|
2373 $problem = $problem . "No ITS1 sequence";
|
|
2374 }
|
|
2375 }
|
|
2376 if ($its2End - $its2Start < 0) { # 5.8S overlaps LSU
|
|
2377 if (($midEFound == 1) && ($lsuFound == 1)) {
|
|
2378 $problemCode = $problemCode . "PC";
|
|
2379 $its2Start = 0;
|
|
2380 $its2End = 0;
|
|
2381 if ($problem ne "") {
|
|
2382 $problem = $problem . "; ";
|
|
2383 }
|
|
2384 $problem = $problem . "LSU seems to overlap 5.8S, sequence may be chimeric";
|
|
2385 } else {
|
|
2386 $problemCode = $problemCode . "Y";
|
|
2387 $its2Start = 0;
|
|
2388 $its2End = 0;
|
|
2389 if ($problem ne "") {
|
|
2390 $problem = $problem . "; ";
|
|
2391 }
|
|
2392 $problem = $problem . "No ITS2 sequence";
|
|
2393 }
|
|
2394 }
|
|
2395
|
|
2396
|
|
2397 if (($problemCode =~ m/[15]/) && ($problemCode =~ m/[S]/)) { # Sequence lack all indications of ITS1
|
|
2398 $its1Start = 0;
|
|
2399 $its1End = 0;
|
|
2400 }
|
|
2401 if (($problemCode =~ m/[25]/) && ($problemCode =~ m/[L]/)) { # Sequence lack all indications of ITS2
|
|
2402 $its2Start = 0;
|
|
2403 $its2End = 0;
|
|
2404 }
|
|
2405
|
|
2406
|
|
2407 $allhitanchorlens = @hitanchorlens[1] . "," . @hitanchorlens[2] . "," . @hitanchorlens[3] . "," . @hitanchorlens[4];
|
|
2408
|
|
2409 push(@allSeqDomains,$allDomains); # Add list of all domains
|
|
2410 push(@dnaStart, $dnaStart); # Add start of the ITS sequence
|
|
2411 push(@startDomain, $startDomain); # Add start domain
|
|
2412 push(@dnaEnd, $dnaEnd); # Add end of ITS sequence
|
|
2413 push(@endDomain, $endDomain); # Add end domain
|
|
2414 push(@ssuStart, $ssuStart); # Add start of the SSU sequence
|
|
2415 push(@ssuEnd, $ssuEnd); # Add end of the SSU sequence
|
|
2416 push(@midStart, $midStart); # Add start of the 5.8S sequence
|
|
2417 push(@midEnd, $midEnd); # Add end of the 5.8S sequence
|
|
2418 push(@lsuStart, $lsuStart); # Add start of the LSU sequence
|
|
2419 push(@lsuEnd, $lsuEnd); # Add end of the LSU sequence
|
|
2420 push(@its1Start, $its1Start); # Add start of the ITS1 sequence
|
|
2421 push(@its1End, $its1End); # Add end of the ITS1 sequence
|
|
2422 push(@its2Start, $its2Start); # Add start of the ITS2 sequence
|
|
2423 push(@its2End, $its2End); # Add end of the ITS2 sequence
|
|
2424 push(@problem, $problem); # Add potential problem info
|
|
2425 push(@problemCode, $problemCode); # Add potential problem info in code form
|
|
2426 push(@anchorLens, $allhitanchorlens); # Add the anchor lengths
|
|
2427 }
|
|
2428 $lc++; # Increase the line count by one
|
|
2429 }
|
|
2430
|
|
2431 ## Save results to the summary file
|
|
2432 if ($out_sum == 1) { # If summary file should be written
|
|
2433 $itsTotal = 0; # Reset the total ITS sum
|
|
2434 foreach $typeCount (@itsCounts) { # Add ITSs from all different origins
|
|
2435 $itsTotal += $typeCount; # Add the number of ITSs for this origin
|
|
2436 }
|
|
2437 ## Write info on the found ITS sequences to the summary file
|
|
2438 print SUMMARY "Sequences detected as ITS by ITSx:\t$itsTotal\n";
|
|
2439 print SUMMARY " On main strand: \t$itsMain\n";
|
|
2440 print SUMMARY " On complementary strand:\t$itsCompl\n";
|
|
2441 if ($allow_reorder == 0) { # If re-ordering of domains is not allowed
|
|
2442 print SUMMARY "Sequences detected as chimeric by ITSx:\t$itsChimeric\n"; # Write the number of reported chimeric sequences to the summary file
|
|
2443 }
|
|
2444 ## Write info on the found ITS sequence types to the summary file
|
|
2445 print SUMMARY "ITS sequences by preliminary origin:\n";
|
|
2446 print SUMMARY " Alveolates: \t" . int(@itsCounts[ord("A")]) . "\n";
|
|
2447 print SUMMARY " Amoebozoa: \t" . int(@itsCounts[ord("D")]) . "\n";
|
|
2448 print SUMMARY " Bacillariophyta: \t" . int(@itsCounts[ord("C")]) . "\n";
|
|
2449 print SUMMARY " Brown algae: \t" . int(@itsCounts[ord("I")]) . "\n";
|
|
2450 print SUMMARY " Bryophytes: \t" . int(@itsCounts[ord("B")]) . "\n";
|
|
2451 print SUMMARY " Euglenozoa: \t" . int(@itsCounts[ord("E")]) . "\n";
|
|
2452 print SUMMARY " Eustigmatophytes:\t" . int(@itsCounts[ord("U")]) . "\n";
|
|
2453 print SUMMARY " Fungi: \t" . int(@itsCounts[ord("F")]) . "\n";
|
|
2454 print SUMMARY " Green algae: \t" . int(@itsCounts[ord("G")]) . "\n";
|
|
2455 print SUMMARY " Liverworts: \t" . int(@itsCounts[ord("L")]) . "\n";
|
|
2456 print SUMMARY " Metazoa: \t" . int(@itsCounts[ord("M")]) . "\n";
|
|
2457 print SUMMARY " Microsporidia: \t" . int(@itsCounts[ord("N")]) . "\n";
|
|
2458 print SUMMARY " Oomycetes: \t" . int(@itsCounts[ord("O")]) . "\n";
|
|
2459 print SUMMARY " Prymnesiophytes: \t" . int(@itsCounts[ord("P")]) . "\n";
|
|
2460 print SUMMARY " Raphidophytes: \t" . int(@itsCounts[ord("Q")]) . "\n";
|
|
2461 print SUMMARY " Red algae: \t" . int(@itsCounts[ord("H")]) . "\n";
|
|
2462 print SUMMARY " Rhizaria: \t" . int(@itsCounts[ord("R")]) . "\n";
|
|
2463 print SUMMARY " Synurophyceae: \t" . int(@itsCounts[ord("S")]) . "\n";
|
|
2464 print SUMMARY " Tracheophyta: \t" . int(@itsCounts[ord("T")]) . "\n";
|
|
2465 print SUMMARY "-----------------------------------------------------------------\n";
|
|
2466 close (SUMMARY); # Close the summary file
|
|
2467 }
|
|
2468
|
|
2469 if ($out_results == 1) {
|
|
2470 close (RESULTS); # Close the results file
|
|
2471 }
|
|
2472 close (RAWOUT); # Close the raw output file
|
|
2473 close (PROBLEM); # Close the file for problematic entries
|
|
2474 if ($foundProblem == 0) {
|
|
2475 `rm $output.problematic.txt 2> /dev/null`;
|
|
2476 }
|
|
2477 if ($out_pos == 1) {
|
|
2478 close (POS); # Close the positions file
|
|
2479 }
|
|
2480 if ($out_fasta == 1) { # If FASTA output is on
|
|
2481 close (FASTA); # Close the FASTA output file
|
|
2482 if ($allow_reorder == 0) { # If re-ordering of domains is not allowed
|
|
2483 close (CHIMERA); # Close the chimera file
|
|
2484 if ($foundChimera == 0) {
|
|
2485 `rm $output.chimeric.fasta 2> /dev/null`;
|
|
2486 }
|
|
2487 }
|
|
2488 if ($out_partial > 0) {
|
|
2489 close FULLPARTIAL;
|
|
2490 }
|
|
2491 }
|
|
2492 if ($out_ssu == 1) {
|
|
2493 close (SSU); # Close the SSU file
|
|
2494 }
|
|
2495 if ($out_lsu == 1) {
|
|
2496 close (LSU); # Close the LSU file
|
|
2497 }
|
|
2498 if ($out_58S == 1) {
|
|
2499 close (MID); # Close the 58S file
|
|
2500 }
|
|
2501 if ($out_its1 == 1) {
|
|
2502 close (ITS1); # Close the ITS1 file
|
|
2503 if ($out_partial > 0) {
|
|
2504 close ITS1PARTIAL;
|
|
2505 }
|
|
2506 }
|
|
2507 if ($out_its2 == 1) {
|
|
2508 close (ITS2); # Close the ITS2 file
|
|
2509 if ($out_partial > 0) {
|
|
2510 close ITS2PARTIAL;
|
|
2511 }
|
|
2512 }
|
|
2513 if ($out_concat == 1) {
|
|
2514 close CONCAT;
|
|
2515 }
|
|
2516
|
|
2517 if ($out_not == 1) { # If not-found output is on
|
|
2518 open (NOTFOUND, "$output\_no_detections.txt"); # Open the not-found output file
|
|
2519 while ($line = <NOTFOUND>) { # Read all entries from file
|
|
2520 chomp($line); # Remove newline char
|
|
2521 push(@nodetectionlist,$line); # Add to non-detection list
|
|
2522 }
|
|
2523 close NOTFOUND;
|
|
2524
|
|
2525 open (NOTFOUND, ">$output\_no_detections.fasta"); # Create a not-found FASTA output file
|
|
2526 foreach $seqID (@nodetectionlist) { # For all non-detections
|
|
2527 $seq = $sequenceDB{"$seqID"}; # Get sequence from sequence database
|
|
2528 print NOTFOUND ">$seqID\n"; # Print not found sequence ID
|
|
2529 print NOTFOUND $seq . "\n"; # Print not found sequence
|
|
2530 }
|
|
2531 close NOTFOUND;
|
|
2532 }
|
|
2533
|
|
2534 ## Clean up and finish
|
|
2535
|
|
2536 if ($pipeline == 0) { # If ITSx is not called from the pipeline mode (i.e. from ITSx)
|
|
2537 if ($save_raw == 1) { # If raw data should be saved
|
|
2538 `mv $tempDir $output\_ITSx_raw_output`; # Change the name of the temporary directory to ..._ITSx_raw_output
|
|
2539 } else { # Else, discard the raw data
|
|
2540 `rm -rf $tempDir`; # Remove the temporary directory
|
|
2541 }
|
|
2542 }
|
|
2543
|
|
2544 ## Get the current time and output a finished message
|
|
2545 $now = localtime;
|
|
2546 if ($silent == 0) {
|
|
2547 print STDERR "$now : Extraction finished!\n";
|
|
2548 print STDERR "-----------------------------------------------------------------\n";
|
|
2549 print STDERR "Thank you for using ITSx!\n";
|
|
2550 print STDERR "Please report bugs or unsupported lineages to itsx\@microbiology.se\n";
|
|
2551 print STDERR "\n";
|
|
2552 }
|
|
2553
|
|
2554 ## Write end time a summary file
|
|
2555 if ($pipeline == 0) { # If not running in pipeline mode
|
|
2556 if ($out_sum == 1) { # If summary output is on
|
|
2557 open (SUMMARY, ">>$output.summary.txt"); # Append to the summary file
|
|
2558 print SUMMARY "ITSx run finished at $now.\n"; # Write ending time for the analysis
|
|
2559 close (SUMMARY); # Close summary file
|
|
2560 }
|
|
2561 }
|
|
2562
|
|
2563 sub hmmerSearch {
|
|
2564 $hmmerCommand = $_[0];
|
|
2565 $outputFile = $_[1];
|
|
2566 $strand = $_[2];
|
|
2567 $profileSet = $_[3];
|
|
2568 open (HMMEROUTPUT, ">$outputFile");
|
|
2569 open (HMMER, "$hmmerCommand |");
|
|
2570 $totalHitCount = 0;
|
|
2571 $hitCount = 0;
|
|
2572 $SSUCount = 0;
|
|
2573 $LSUCount = 0;
|
|
2574 $startCount = 0;
|
|
2575 $endCount = 0;
|
|
2576 $maxCount = 1;
|
|
2577 while (chomp($line = <HMMER>)) {
|
|
2578 if (substr($line,0,6) eq "Query:") {
|
|
2579 $hitCount = 0;
|
|
2580 $SSUCount = 0;
|
|
2581 $LSUCount = 0;
|
|
2582 $startCount = 0;
|
|
2583 $endCount = 0;
|
|
2584 undef @bestScore;
|
|
2585 undef @bestEntry;
|
|
2586
|
|
2587 $query = substr($line,7);
|
|
2588 $queryLength = $query;
|
|
2589 $queryLength =~ s/.* *//;
|
|
2590 $queryLength =~ s/[^0-9]//g;
|
|
2591 $query =~ s/ *//;
|
|
2592 $query =~ s/ *.*//;
|
|
2593
|
|
2594 print HMMEROUTPUT "## New query:\t$query\t$queryLength\n";
|
|
2595
|
|
2596 }
|
|
2597 if (substr($line,0,12) eq "Description:") {
|
|
2598 $desc = $line;
|
|
2599 }
|
|
2600 if (substr($line,0,3) eq ">> ") {
|
|
2601 ($tempshit,$hmmerSubjectName) = split(' ',$line);
|
|
2602 }
|
|
2603 if ($line =~ m/[0-9] ! /) {
|
|
2604 $stats = $line;
|
|
2605 $stats =~ s/ */\t/g;
|
|
2606 ($empty,$no,$excl,$score) = split('\t',$stats);
|
|
2607 $hitCount++;
|
|
2608 $totalHitCount++;
|
|
2609 if ($maxCount == 0) {
|
|
2610 print HMMEROUTPUT "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2611 } else {
|
|
2612 if (substr($hmmerSubjectName,0,5) eq "1_SSU") {
|
|
2613 $SSUCount++;
|
|
2614 if ($SSUCount <= $maxCount) {
|
|
2615 @bestScore[1] = $score;
|
|
2616 @bestEntry[1] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2617 } else {
|
|
2618 if ($score > @bestScore[1]) {
|
|
2619 @bestScore[1] = $score;
|
|
2620 @bestEntry[1] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2621 }
|
|
2622 }
|
|
2623 }
|
|
2624 if (substr($hmmerSubjectName,0,5) eq "4_LSU") {
|
|
2625 $LSUCount++;
|
|
2626 if ($LSUCount <= $maxCount) {
|
|
2627 @bestScore[4] = $score;
|
|
2628 @bestEntry[4] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2629 } else {
|
|
2630 if ($score > @bestScore[4]) {
|
|
2631 @bestScore[4] = $score;
|
|
2632 @bestEntry[4] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2633 }
|
|
2634 }
|
|
2635 }
|
|
2636 if (substr($hmmerSubjectName,0,5) eq "2_5.8") {
|
|
2637 $startCount++;
|
|
2638 if ($startCount <= $maxCount) {
|
|
2639 @bestScore[2] = $score;
|
|
2640 @bestEntry[2] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2641 } else {
|
|
2642 if ($score > @bestScore[2]) {
|
|
2643 @bestScore[2] = $score;
|
|
2644 @bestEntry[2] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2645 }
|
|
2646 }
|
|
2647 }
|
|
2648 if (substr($hmmerSubjectName,0,5) eq "3_End") {
|
|
2649 $endCount++;
|
|
2650 if ($endCount <= $maxCount) {
|
|
2651 @bestScore[3] = $score;
|
|
2652 @bestEntry[3] = "$query\t$hmmerSubjectName\t$queryLength$stats\n";
|
|
2653 } else {
|
|
2654 if ($score > @bestScore[3]) {
|
|
2655 @bestScore[3] = $score;
|
|
2656 @bestEntry[3] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"
|
|
2657 }
|
|
2658 }
|
|
2659 }
|
|
2660 }
|
|
2661 }
|
|
2662 if (substr($line,0,2) eq "//") {
|
|
2663 if ($maxCount > 0) {
|
|
2664 if ($SSUCount > 0) {
|
|
2665 print HMMEROUTPUT @bestEntry[1];
|
|
2666 }
|
|
2667 if ($startCount > 0) {
|
|
2668 print HMMEROUTPUT @bestEntry[2];
|
|
2669 }
|
|
2670 if ($endCount > 0) {
|
|
2671 print HMMEROUTPUT @bestEntry[3];
|
|
2672 }
|
|
2673 if ($LSUCount > 0) {
|
|
2674 print HMMEROUTPUT @bestEntry[4];
|
|
2675 }
|
|
2676 }
|
|
2677 print HMMEROUTPUT "//\n";
|
|
2678 }
|
|
2679 }
|
|
2680 close(HMMEROUTPUT);
|
|
2681 $now = localtime;
|
|
2682 if ($silent == 0) {
|
|
2683 if ($strand eq "M") {
|
|
2684 print STDERR " $now : " . ucfirst($profileIndex{$profileSet}) . " analysis of main strand finished.\n"; # Print finished type
|
|
2685 } else {
|
|
2686 print STDERR " $now : " . ucfirst($profileIndex{$profileSet}) . " analysis of complementary strand finished.\n"; # Print finished type
|
|
2687 }
|
|
2688 }
|
|
2689 }
|
|
2690
|
|
2691
|
|
2692 ## Please send beers, pizzas, cakes, fruit pies, job positions and other types of feedback to:
|
|
2693 ## johan.bengtsson [at] microbiology.se
|
|
2694 ## Looking forward to hearing from you.... visit my website: www.microbiology.se for info on my research
|
|
2695 ## //Johan Bengtsson, 2012-2014
|