Mercurial > repos > okorol > itsx
comparison ITSx @ 0:f82c70f54bd7 draft
Uploaded
author | okorol |
---|---|
date | Tue, 24 Mar 2015 12:02:48 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f82c70f54bd7 |
---|---|
1 #!/usr/bin/perl | |
2 # ITSx ITS Extractor | |
3 $app_title = "ITSx -- Identifies ITS sequences and extracts the ITS region"; | |
4 $app_author = "Johan Bengtsson-Palme et al., University of Gothenburg"; | |
5 $app_version = "1.0.11"; | |
6 $app_message = ""; | |
7 # ----------------------------------------------------------------- # | |
8 | |
9 # License information | |
10 $license = | |
11 " ITSx - ITS Extractor -- Identifies ITS sequences and extracts the ITS region\ | |
12 Copyright (C) 2012-2014 Johan Bengtsson-Palme et al.\ | |
13 \ | |
14 This program is free software: you can redistribute it and/or modify\ | |
15 it under the terms of the GNU General Public License as published by\ | |
16 the Free Software Foundation, either version 3 of the License, or\ | |
17 (at your option) any later version.\ | |
18 \ | |
19 This program is distributed in the hope that it will be useful,\ | |
20 but WITHOUT ANY WARRANTY; without even the implied warranty of\ | |
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\ | |
22 GNU General Public License for more details.\ | |
23 \ | |
24 You should have received a copy of the GNU General Public License\ | |
25 along with this program, in a file called 'license.txt'\ | |
26 If not, see: http://www.gnu.org/licenses/.\ | |
27 "; | |
28 | |
29 ## BUGS: | |
30 $bugs = "New features in this version ($app_version):\ | |
31 - None\ | |
32 \ | |
33 Fixed bugs in this version ($app_version):\ | |
34 - Fixed a bug causing newline characters to be occasionally skipped in the 'its1.full_and_partial.fasta' FASTA output file when the '--anchor' option was used\ | |
35 \ | |
36 Known bugs in this version ($app_version):\ | |
37 - None\ | |
38 "; | |
39 | |
40 ## OPTIONS: | |
41 $options = "\ | |
42 -i {file} : DNA FASTA input file to investigate\ | |
43 -o {file} : Base for the names of output file(s)\ | |
44 -p {directory} : A path to a directory of HMM-profile collections representing ITS conserved regions, default is in the same directory as ITSx itself\ | |
45 --date {T or F} : Adds a date and time stamp to the output directory, off (F) by default\ | |
46 --reset {T or F} : Re-creates the HMM-database before ITSx is run, off (F) by default\ | |
47 | |
48 Sequence selection options:\ | |
49 -t {character code} : Profile set to use for the search, see the User's Guide (comma-separated), default is all\ | |
50 -E {value} : Domain E-value cutoff for a sequence to be included in the output, default = 1e-5\ | |
51 -S {value} : Domain score cutoff for a sequence to be included in the output, default = 0\ | |
52 -N {value} : The minimal number of domains that must match a sequence before it is included, default = 2\ | |
53 --selection_priority {sum, domains, eval, score} : Selects what will be of highest priority when determining the origin of the sequence, default is sum\ | |
54 --search_eval {value} : The E-value cutoff used in the HMMER search, high numbers may slow down the process, cannot be used with the --search_score option, default is 0.01\ | |
55 --search_score {value} : The score cutoff used in the HMMER search, low numbers may slow down the process, cannot be used with the --search_eval option, default is to used E-value cutoff, not score\ | |
56 --allow_single_domain {e-value,score or F} : Allow inclusion of sequences that only find a single domain, given that they meet the given E-value and score thresholds, on with parameters 1e-9,0 by default\ | |
57 --allow_reorder {T or F} : Allows profiles to be in the wrong order on extracted sequences, off (F) by default\ | |
58 --complement {T or F} : Checks both DNA strands against the database, creating reverse complements, on (T) by default\ | |
59 --cpu {value} : the number of CPU threads to use, default is 1\ | |
60 --multi_thread {T or F} : Multi-thread the HMMER-search, on (T) if number of CPUs (--cpu option > 1), else off (F) by default\ | |
61 --heuristics {T or F} : Selects whether to use HMMER's heuristic filtering, off (F) by default\ | |
62 | |
63 Output options:\ | |
64 --summary {T or F} : Summary of results output, on (T) by default\ | |
65 --graphical {T or F} : 'Graphical' output, on (T) by default\ | |
66 --fasta {T or F} : FASTA-format output of extracted ITS sequences, on (T) by default\ | |
67 --preserve {T or F} : Preserve sequence headers in input file instead of printing out ITSx headers, off (F) by default\ | |
68 --save_regions {SSU,ITS1,5.8S,ITS2,LSU,all,none} : A comma separated list of regions to output separate FASTA files for, 'ITS1,ITS2' by default\ | |
69 --anchor {integer or HMM} : Saves an additional number of bases before and after each extracted region. If set to 'HMM' all bases matching the corresponding HMM will be output, default = 0\ | |
70 --only_full {T or F} : If true, output is limited to full-length regions, off (F) by default\ | |
71 --partial {integer} : Saves additional FASTA-files for full and partial ITS sequences longer than the specified cutoff, default = 0 (off)\ | |
72 --concat {T or F} : Saves a FASTA-file with concatenated ITS sequences (with 5.8S removed), off (F) by default\ | |
73 --minlen {integer} : Minimum length the ITS regions must be to be outputted in the concatenated file (see above), default = 0\ | |
74 --positions {T or F} : Table format output containing the positions ITS sequences were found in, on (T) by default\ | |
75 --table {T or F} : Table format output of sequences containing probable ITS sequences, off (F) by default\ | |
76 --not_found {T or F} : Saves a list of non-found entries, on (T) by default\ | |
77 --detailed_results {T or F} : Saves a tab-separated list of all results, off (F) by default\ | |
78 --truncate {T or F} : Truncates the FASTA output to only contain the actual ITS sequences found, on (T) by default\ | |
79 --silent {T or F} : Supresses printing progress info to stderr, off (F) by default\ | |
80 --graph_scale {value} : Sets the scale of the graph output, if value is zero, a percentage view is shown, default = 0\ | |
81 --save_raw {T or F} : Saves all raw data for searches etc. instead of removing it on finish, off (F) by default\ | |
82 | |
83 -h : displays this help message\ | |
84 --help : displays this help message\ | |
85 --bugs : displays the bug fixes and known bugs in this version of ITSx\ | |
86 --license : displays licensing information\ | |
87 "; | |
88 | |
89 | |
90 ## Print title message | |
91 print STDERR "$app_title\nby $app_author\nVersion: $app_version\n$app_message"; | |
92 print STDERR "-----------------------------------------------------------------\n"; | |
93 | |
94 ## Setup default variable values | |
95 use List::Util qw(first max maxstr min minstr reduce shuffle sum); | |
96 | |
97 $bindir = $0; | |
98 $bindir =~ s/_x//; | |
99 $input = ""; | |
100 $output = "ITSx_out"; | |
101 $hmmscan = ""; | |
102 $profileDB = "$bindir\_db/HMMs"; | |
103 $type = "all"; | |
104 $E = 1e-5; | |
105 $S = 0; | |
106 $N = 2; | |
107 $priority = "sum"; | |
108 $search_eval = 0.01; | |
109 $search_score = ""; | |
110 $allow_single_E = 1e-9; | |
111 $allow_single_score = 0; | |
112 #$allow_single_E = -1; # Turns off single-domain matching by E-value | |
113 #$allow_single_score = 0; # Turns off single-domain matching by score | |
114 $allow_reorder = 0; | |
115 $complement = 1; | |
116 $cpu = 1; | |
117 $multi_thread = "unset"; | |
118 $heuristics = 0; | |
119 $out_sum = 1; | |
120 $out_graph = 1; | |
121 $out_fasta = 1; | |
122 $out_preserve = 0; | |
123 $out_ssu = 0; | |
124 $out_its1 = 1; | |
125 $out_its2 = 1; | |
126 $out_58S = 0; | |
127 $out_lsu = 0; | |
128 $out_pos = 1; | |
129 $out_table = 0; | |
130 $out_not = 1; | |
131 $out_date = 0; | |
132 $out_joined = 0; | |
133 $out_results = 0; | |
134 $out_partial = 0; | |
135 $out_concat = 0; | |
136 $concat_minlen = 0; | |
137 $truncate = 1; | |
138 $anchor = 0; | |
139 $only_full = 0; | |
140 $graph_scale = 0; | |
141 $debug = 0; | |
142 $reset = 0; | |
143 | |
144 ## Read command-line options | |
145 for ($i = 0; $i <= scalar(@ARGV); $i++) { # Goes through the list of arguments | |
146 $arg = @ARGV[$i]; # Stores the current argument in $arg | |
147 | |
148 if ($arg eq "-i") { # Read input files from -i flag | |
149 $i++; | |
150 $input = @ARGV[$i]; | |
151 } | |
152 if ($arg eq "-o") { # Read output files from -o flag | |
153 $i++; | |
154 $output = @ARGV[$i]; | |
155 } | |
156 if ($arg eq "-p") { # Read profile database from -p flag | |
157 $i++; | |
158 $profileDB = @ARGV[$i]; | |
159 } | |
160 if ($arg eq "--hmmscan") { # Read pre-computed hmmscan output file from --hmmscan flag ('undocumented' feature) | |
161 $i++; | |
162 $hmmscan = @ARGV[$i]; | |
163 } | |
164 if ($arg eq "--date") { # Determine whether or not to add a date stamp based on the --date flag | |
165 $i++; | |
166 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0" | |
167 $out_date = 0; | |
168 } else { | |
169 $out_date = 1; | |
170 } | |
171 } | |
172 if ($arg eq "--reset") { # Reset HMM database? | |
173 $i++; | |
174 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0" | |
175 $reset = 0; | |
176 } else { | |
177 $reset = 1; | |
178 } | |
179 } | |
180 | |
181 if ($arg eq "-t") { # Select what types of ITSs to look for using the -t flag | |
182 $i++; | |
183 $type = @ARGV[$i]; | |
184 } | |
185 if ($arg eq "-E") { # Set the E-value cutoff using the -E flag | |
186 $i++; | |
187 $E = @ARGV[$i]; | |
188 } | |
189 if ($arg eq "-S") { # Set the score cutoff using the -S flag | |
190 $i++; | |
191 $S = @ARGV[$i]; | |
192 } | |
193 if ($arg eq "-N") { # Set the number of found domains cutoff using the -N flag | |
194 $i++; | |
195 $N = @ARGV[$i]; | |
196 } | |
197 if ($arg eq "--selection_priority") { # Set how to order the ITS types using the --selection_priority flag | |
198 $i++; | |
199 $priority = @ARGV[$i]; | |
200 } | |
201 if ($arg eq "--search_eval") { # Set the E-value cutoff for the HMMER search using the --search_eval flag | |
202 $i++; | |
203 $search_eval = @ARGV[$i]; | |
204 $search_score = ""; # Turns off score cutoff | |
205 } | |
206 if ($arg eq "--search_score") { # Set the score cutoff for the HMMER search using the --search_score flag | |
207 $i++; | |
208 $search_score = @ARGV[$i]; | |
209 $search_eval = ""; # Turns off E-value cutoff | |
210 } | |
211 if ($arg eq "--allow_single_domain") { # Determine whether or not to allow single domain matches based on the --allow_single_domain flag | |
212 $i++; | |
213 if (substr(@ARGV[$i],0,1) =~ m/^[Ff0]/) { # Check if argument begins with "F", "f", or "0" | |
214 $allow_single_E = -1; # Turns off single-domain matching by E-value | |
215 $allow_single_score = 0; # Turns off single-domain matching by score | |
216 } else { | |
217 ($allow_single_E,$allow_single_score) = split(',',@ARGV[$i]); # Turns on single-domain matching, assigning the first given value as the E-value cutoff, and the second as score cutoff | |
218 } | |
219 } | |
220 if ($arg eq "--allow_reorder") { # Determine whether or not to allow the domains to be in the wrong order based on the --allow_reorder flag | |
221 $i++; | |
222 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
223 $allow_reorder = 1; | |
224 } else { | |
225 $allow_reorder = 0; | |
226 } | |
227 } | |
228 if ($arg eq "--complement") { # Determine whether or not to scan the complementary strand of the input file based on the --complement flag | |
229 $i++; | |
230 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
231 $complement = 1; | |
232 } else { | |
233 $complement = 0; | |
234 } | |
235 } | |
236 if ($arg eq "--cpu") { # Set the number of CPUs to use based on the --cpu flag | |
237 $i++; | |
238 $cpu = @ARGV[$i]; | |
239 } | |
240 if ($arg eq "--multi_thread") { # Determine whether or not to multi-thread the HMMER step based on the --multi_thread flag | |
241 $i++; | |
242 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
243 $multi_thread = 1; | |
244 } else { | |
245 $multi_thread = 0; | |
246 } | |
247 } | |
248 if ($arg eq "--heuristics") { # Determine whether or not to use HMMER's heuristic filtering based on the --heuristics flag | |
249 $i++; | |
250 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
251 $heuristics = 1; | |
252 } else { | |
253 $heuristics = 0; | |
254 } | |
255 } | |
256 | |
257 if ($arg eq "--summary") { # Determine whether or not to output a summary based on the --summary flag | |
258 $i++; | |
259 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
260 $out_sum = 1; | |
261 } else { | |
262 $out_sum = 0; | |
263 } | |
264 } | |
265 if ($arg eq "--graphical") { # Determine whether or not to output a graphical representation of matches based on the --graphical flag | |
266 $i++; | |
267 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
268 $out_graph = 1; | |
269 } else { | |
270 $out_graph = 0; | |
271 } | |
272 } | |
273 if ($arg eq "--detailed_results") { # Determine whether or not to output a detailed results list, based on the --detailed_results flag | |
274 $i++; | |
275 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
276 $out_results = 1; | |
277 } else { | |
278 $out_results = 0; | |
279 } | |
280 } | |
281 if ($arg eq "--partial") { # Set the full-and-partial cutoff | |
282 $i++; | |
283 $out_partial = @ARGV[$i]; | |
284 } | |
285 if ($arg eq "--anchor") { # Set the length of the sequence "anchors" | |
286 $i++; | |
287 $anchor = @ARGV[$i]; | |
288 } | |
289 if ($arg eq "--only_full") { # Output only full-length regions | |
290 $i++; | |
291 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
292 $only_full = 1; | |
293 } else { | |
294 $only_full = 0; | |
295 } | |
296 } | |
297 if ($arg eq "--save_regions") { # Determine which regions to output FASTA files for based on the --save_regions flag | |
298 $i++; | |
299 @save_regions = split(',',uc(@ARGV[$i])); | |
300 $out_ssu = 0; | |
301 $out_its1 = 0; | |
302 $out_its2 = 0; | |
303 $out_58S = 0; | |
304 $out_lsu = 0; | |
305 foreach $save_region (@save_regions) { | |
306 if ($save_region eq "SSU") { | |
307 $out_ssu = 1; | |
308 } | |
309 if ($save_region eq "ITS1") { | |
310 $out_its1 = 1; | |
311 } | |
312 if ($save_region eq "5.8S") { | |
313 $out_58S = 1; | |
314 } | |
315 if ($save_region eq "ITS2") { | |
316 $out_its2 = 1; | |
317 } | |
318 if ($save_region eq "LSU") { | |
319 $out_lsu = 1; | |
320 } | |
321 if ($save_region eq "ALL") { | |
322 $out_ssu = 1; | |
323 $out_its1 = 1; | |
324 $out_its2 = 1; | |
325 $out_58S = 1; | |
326 $out_lsu = 1; | |
327 } | |
328 if ($save_region eq "NONE") { | |
329 $out_ssu = 0; | |
330 $out_its1 = 0; | |
331 $out_its2 = 0; | |
332 $out_58S = 0; | |
333 $out_lsu = 0; | |
334 } | |
335 } | |
336 } | |
337 if ($arg eq "--positions") { # Determine whether or not to output a positions file based on the --positions flag | |
338 $i++; | |
339 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
340 $out_pos = 1; | |
341 } else { | |
342 $out_pos = 0; | |
343 } | |
344 } | |
345 if ($arg eq "--concat") { # Determine whether or not to output a concatednated ITS1 + ITS2 file | |
346 $i++; | |
347 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
348 $out_concat = 1; | |
349 } else { | |
350 $out_concat = 0; | |
351 } | |
352 } | |
353 if ($arg eq "--minlen") { # Set the min length of the combined ITS1 and ITS2 sequences for concatenation | |
354 $i++; | |
355 $concat_minlen = @ARGV[$i]; | |
356 } | |
357 if ($arg eq "--fasta") { # Determine whether or not to output FASTA-files based on the --fasta flag | |
358 $i++; | |
359 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
360 $out_fasta = 1; | |
361 } else { | |
362 $out_fasta = 0; | |
363 } | |
364 } | |
365 if ($arg eq "--preserve") { # Determine whether or not to preserve FASTA-headers based on the --preserve flag | |
366 $i++; | |
367 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
368 $out_preserve = 1; | |
369 } else { | |
370 $out_preserve = 0; | |
371 } | |
372 } | |
373 if ($arg eq "--joined") { # Determine whether or not to output a FASTA-file containing ALL sorts of output sequences (for debugging) | |
374 $i++; | |
375 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
376 $out_joined = 1; | |
377 } else { | |
378 $out_joined = 0; | |
379 } | |
380 } | |
381 if ($arg eq "--table") { # Determine whether or not to output tables of all potential matches based on the --table flag | |
382 $i++; | |
383 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
384 $out_table = 1; | |
385 } else { | |
386 $out_table = 0; | |
387 } | |
388 } | |
389 if ($arg eq "--not_found") { # Determine whether or not to output a list of sequences that are not ITSs based on the --not_found flag | |
390 $i++; | |
391 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
392 $out_not = 1; | |
393 } else { | |
394 $out_not = 0; | |
395 } | |
396 } | |
397 if ($arg eq "--silent") { # Determine whether or not to output anything to the screen based on the --silent flag | |
398 $i++; | |
399 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
400 $silent = 1; | |
401 } else { | |
402 $silent = 0; | |
403 } | |
404 } | |
405 if ($arg eq "--graph_scale") { # Set the scale of the graphical output based on the --graph_scale flag | |
406 $i++; | |
407 $graph_scale = @ARGV[$i]; | |
408 } | |
409 if ($arg eq "--save_raw") { # Determine whether or not to save all the raw intermediate data based on the --save_raw flag | |
410 $i++; | |
411 if (substr(@ARGV[$i],0,1) =~ m/^[Tt1]/) { # Check if argument begins with "T", "t", or "1" | |
412 $save_raw = 1; | |
413 } else { | |
414 $save_raw = 0; | |
415 } | |
416 } | |
417 | |
418 ## If "-h" or "--help" are among the options, output usage data and options | |
419 if (($arg eq "-h") || ($arg eq "--help")) { | |
420 print "Usage: ITSx -i <input file> -o <output file>\nOptions:$options"; | |
421 print "-----------------------------------------------------------------\n"; | |
422 exit; # Exit ITSx | |
423 } | |
424 | |
425 ## If "--bugs" is among the options, output bugs and features information | |
426 if ($arg eq "--bugs") { | |
427 print "$bugs\n"; | |
428 exit; # Exit ITSx | |
429 } | |
430 | |
431 ## If "--license" is among the options, output license information | |
432 if ($arg eq "--license") { | |
433 print "$license\n"; | |
434 exit; # Exit ITSx | |
435 } | |
436 | |
437 if ($arg eq "--debug") { # Run ITSx in debug mode | |
438 $debug = 1; | |
439 } | |
440 if ($arg eq "--pipeline") { # Run ITSx in pipeline mode | |
441 $pipeline = 1; | |
442 } | |
443 } | |
444 | |
445 ## Setup some variables dependent on input | |
446 | |
447 if ($multi_thread eq "unset") { # If the multi-thread option is not set | |
448 if ($cpu > 1) { # Then if the number of CPUs used > 1, then multi-thread HMMER searches | |
449 $multi_thread = 1; | |
450 } else { # Else, run HMMER searches sequentially on one CPU | |
451 $multi_thread = 0; | |
452 } | |
453 } | |
454 | |
455 if ($hmmscan ne "") { # If a pre-computed hmmscan output is supplied | |
456 $output = $hmmscan; # Then set the base of the output directory name to be the same as that hmmscan output file | |
457 } | |
458 | |
459 ## Check for binaries | |
460 | |
461 chomp($path = `which hmmpress`); # Get the path for hmmpress | |
462 if ($path eq "") { # If the path is empty, then show an error message and exit ITSx | |
463 print STDERR "FATAL ERROR :: Could not locate HMMER binaries! It seems that hmmpress is not installed properly.\ | |
464 Consult the manual for installation instructions. Note that HMMER3 is required. Previous HMMER-versions will not work.\ | |
465 This error is fatal, and ITSx will now abort.\n"; | |
466 print STDERR "-----------------------------------------------------------------\n"; | |
467 exit; | |
468 } | |
469 | |
470 chomp($path = `which hmmscan`); # Get the path for hmmscan | |
471 if ($path eq "") { # If the path is empty, then show an error message and exit ITSx | |
472 print STDERR "FATAL ERROR :: Could not locate HMMER binaries! It seems that hmmscan is not installed properly.\ | |
473 Consult the manual for installation instructions. Note that HMMER3 is required. Previous HMMER-versions will not work.\ | |
474 This error is fatal, and ITSx will now abort.\n"; | |
475 print STDERR "-----------------------------------------------------------------\n"; | |
476 exit; | |
477 } | |
478 | |
479 | |
480 ## Check for database | |
481 chomp($errormsg = `ls $profileDB* 2>&1 1>/dev/null`); # Get the error msg when looking for the profile database | |
482 if (substr($errormsg,0,4) eq "ls: ") { # If the error message begins with "ls: ", then show an error message and exit ITSx | |
483 print STDERR "FATAL ERROR :: The specified profile database could not be found.\ | |
484 Consult the manual for installation instructions.\ | |
485 This error is fatal, and ITSx will now abort.\n"; | |
486 print STDERR "-----------------------------------------------------------------\n"; | |
487 exit; | |
488 } | |
489 | |
490 if ($pipeline == 0) { # If ITSx is not run in pipeline mode (i.e. from ITSx) | |
491 if ($out_date == 1) { # If a date and time stamp should be supplied | |
492 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time); # Get the date and time | |
493 $year = $year + 1900; # Format the year | |
494 $mon = $mon + 1; # Format the month | |
495 if ($mon < 10) { # Add a zero to the month, if needed | |
496 $mon = "0" . $mon; | |
497 } | |
498 if ($mday < 10) { # Add a zero to the day, if needed | |
499 $mday = "0" . $mday; | |
500 } | |
501 if ($hour < 10) { # Add a zero to the hour, if needed | |
502 $hour = "0" . $hour; | |
503 } | |
504 if ($min < 10) { # Add a zero to the minute, if needed | |
505 $min = "0" . $min; | |
506 } | |
507 $outputDate = ".$year\-$mon\-$mday\_$hour.$min"; # Create a date and time stamp | |
508 $outputDate =~ s./.-.g; # Remove any potential slashes in the output name (as this will confuse ITSx's file naming) | |
509 $output = $output . $outputDate; # Add the date and time stamp top the output base name | |
510 } | |
511 } | |
512 | |
513 $tempDir = "ITSx_temp_directory__$output"; # Setup a temporary directory variable | |
514 $tempDir =~ s./.-.g; # Remove any potential slashes in the output name (as this will confuse ITSx's file naming) | |
515 | |
516 if ($pipeline == 0) { # If not running in pipeline mode | |
517 ## Create a summary file | |
518 if ($out_sum == 1) { # If summary output is on | |
519 $now = localtime; # Get the current time | |
520 open (SUMMARY, ">$output.summary.txt"); # Create the summary file | |
521 print SUMMARY "ITSx run started at $now.\n"; # Output the starting time for the analysis | |
522 print SUMMARY "-----------------------------------------------------------------\n"; | |
523 close (SUMMARY); # Close summary file | |
524 } | |
525 } | |
526 | |
527 ## Create a temporary directory for ITSx | |
528 if ($pipeline == 0) { # If ITSx is not run in pipeline mode (i.e. from ITSx) | |
529 `mkdir $tempDir 2> /dev/null`; # Create a temporary directory | |
530 } | |
531 | |
532 | |
533 ## Prepare profile database | |
534 ## Get the current time and output info message | |
535 $now = localtime; | |
536 if ($silent == 0) { | |
537 print STDERR "$now : Preparing HMM database (should be quick)...\n"; | |
538 } | |
539 | |
540 ## Setup profile index | |
541 %profileIndex = {}; | |
542 | |
543 # A = Alveolata | |
544 # B = Bryophyta | |
545 # C = Bacillariophyta | |
546 # D = Amoebozoa | |
547 # E = Euglenozoa | |
548 # F = Fungi | |
549 # G = Chlorophyta (green algae) | |
550 # H = Rhodophyta (red algae) | |
551 # I = Phaeophyceae (brown algae) | |
552 # L = Marchantiophyta (liverworts) | |
553 # M = Metazoa | |
554 # N = Microsporidia | |
555 # O = Oomycota | |
556 # P = Haptophyceae (prymnesiophytes) | |
557 # Q = Raphidophyceae | |
558 # R = Rhizaria | |
559 # S = Synurophyceae | |
560 # T = Tracheophyta (higher plants) | |
561 # U = Eustigmatophyceae | |
562 # X = Apusozoa | |
563 # Y = Parabasalia | |
564 | |
565 $profileIndex{"A"} = "alveolates"; | |
566 $profileIndex{"B"} = "bryophyta"; | |
567 $profileIndex{"C"} = "bacillariophyta"; | |
568 $profileIndex{"D"} = "amoebozoa"; | |
569 $profileIndex{"E"} = "euglenozoa"; | |
570 $profileIndex{"F"} = "fungi"; | |
571 $profileIndex{"G"} = "chlorophyta"; | |
572 $profileIndex{"H"} = "rhodophyta"; | |
573 $profileIndex{"I"} = "phaeophyceae"; | |
574 $profileIndex{"J"} = "undefined"; | |
575 $profileIndex{"K"} = "undefined"; | |
576 $profileIndex{"L"} = "marchantiophyta"; | |
577 $profileIndex{"M"} = "metazoa"; | |
578 $profileIndex{"N"} = "microsporidia"; | |
579 $profileIndex{"O"} = "oomycota"; | |
580 $profileIndex{"P"} = "haptophyceae"; | |
581 $profileIndex{"Q"} = "raphidophyceae"; | |
582 $profileIndex{"R"} = "rhizaria"; | |
583 $profileIndex{"S"} = "synurophyceae"; | |
584 $profileIndex{"T"} = "tracheophyta"; | |
585 $profileIndex{"U"} = "eustigmatophyceae"; | |
586 $profileIndex{"V"} = "undefined"; | |
587 $profileIndex{"W"} = "undefined"; | |
588 $profileIndex{"X"} = "apusozoa"; | |
589 $profileIndex{"Y"} = "parabasalia"; | |
590 $profileIndex{"Z"} = "undefined"; | |
591 | |
592 | |
593 @profileList = split(',',uc($type)); # Get the list of profile types | |
594 foreach $entry (@profileList) { # Go through the entered types | |
595 if (($entry eq "ALL") || ($entry eq ".")) { # If "all" among the entries | |
596 push(@profileSet,"A"); # Add the alveolates profiles to the investigation set | |
597 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set | |
598 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set | |
599 push(@profileSet,"D"); # Add the amoebozoa profiles to the investigation set | |
600 push(@profileSet,"E"); # Add the euglenozoa profiles to the investigation set | |
601 push(@profileSet,"F"); # Add the fungi profiles to the investigation set | |
602 push(@profileSet,"G"); # Add the green algae profiles to the investigation set | |
603 push(@profileSet,"H"); # Add the red algae profiles to the investigation set | |
604 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set | |
605 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set | |
606 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set | |
607 #push(@profileSet,"N"); # Add the microsporidia profiles to the investigation set | |
608 push(@profileSet,"O"); # Add the oomycetes profiles to the investigation set | |
609 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set | |
610 push(@profileSet,"Q"); # Add the raphidophytes profiles to the investigation set | |
611 push(@profileSet,"R"); # Add the rhizaria profiles to the investigation set | |
612 push(@profileSet,"S"); # Add the synurophyceae profiles to the investigation set | |
613 push(@profileSet,"T"); # Add the tracheophyta (higher plants) profiles to the investigation set | |
614 push(@profileSet,"U"); # Add the eustigmatophytes profiles to the investigation set | |
615 #push(@profileSet,"X"); # Add the apusozoa profiles to the investigation set | |
616 #push(@profileSet,"Y"); # Add the parabasalia profiles to the investigation set | |
617 } else { | |
618 if (length($entry) == 1) { # If the name has only one character | |
619 if ($entry =~ m/[ABCDERFHILMNOPQRSTUXY]/) { # If the selected set exists | |
620 push(@profileSet,$entry); # Add the selected profiles to the investigation set | |
621 } | |
622 } else { | |
623 if ($entry =~ m/ALVEOL/) { | |
624 push(@profileSet,"A"); # Add the alveolates profiles to the investigation set | |
625 } | |
626 if ($entry =~ m/BRYO/) { | |
627 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set | |
628 } | |
629 if ($entry =~ m/MOSS/) { | |
630 push(@profileSet,"B"); # Add the bryophytes profiles to the investigation set | |
631 } | |
632 if ($entry =~ m/BACILL/) { | |
633 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set | |
634 } | |
635 if ($entry =~ m/DIATOM/) { | |
636 push(@profileSet,"C"); # Add the bacillariophyta profiles to the investigation set | |
637 } | |
638 if ($entry =~ m/AMOEB/) { | |
639 push(@profileSet,"D"); # Add the amoebozoa profiles to the investigation set | |
640 } | |
641 if ($entry =~ m/EUGLE/) { | |
642 push(@profileSet,"E"); # Add the euglenozoa profiles to the investigation set | |
643 } | |
644 if ($entry =~ m/FUNG/) { | |
645 push(@profileSet,"F"); # Add the fungi profiles to the investigation set | |
646 } | |
647 if ($entry =~ m/GREEN/) { | |
648 push(@profileSet,"G"); # Add the green algae profiles to the investigation set | |
649 } | |
650 if ($entry =~ m/CHLORO/) { | |
651 push(@profileSet,"G"); # Add the green algae profiles to the investigation set | |
652 } | |
653 if ($entry =~ m/RED-AL/) { | |
654 push(@profileSet,"H"); # Add the red algae profiles to the investigation set | |
655 } | |
656 if ($entry =~ m/RHODO/) { | |
657 push(@profileSet,"H"); # Add the red algae profiles to the investigation set | |
658 } | |
659 if ($entry =~ m/BROWN/) { | |
660 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set | |
661 } | |
662 if ($entry =~ m/PHAEOP/) { | |
663 push(@profileSet,"I"); # Add the brown algae profiles to the investigation set | |
664 } | |
665 if ($entry =~ m/LIVER/) { | |
666 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set | |
667 } | |
668 if ($entry =~ m/MARCH/) { | |
669 push(@profileSet,"L"); # Add the liverworts profiles to the investigation set | |
670 } | |
671 if ($entry =~ m/METAZ/) { | |
672 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set | |
673 } | |
674 if ($entry =~ m/ANIMAL/) { | |
675 push(@profileSet,"M"); # Add the metazoa profiles to the investigation set | |
676 } | |
677 if ($entry =~ m/MICROSPOR/) { | |
678 push(@profileSet,"N"); # Add the microsporidia profiles to the investigation set | |
679 } | |
680 if ($entry =~ m/OOMYC/) { | |
681 push(@profileSet,"O"); # Add the oomycetes profiles to the investigation set | |
682 } | |
683 if ($entry =~ m/PRYMN/) { | |
684 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set | |
685 } | |
686 if ($entry =~ m/HAPTO/) { | |
687 push(@profileSet,"P"); # Add the prymnesiophytes profiles to the investigation set | |
688 } | |
689 if ($entry =~ m/RAPHID/) { | |
690 push(@profileSet,"Q"); # Add the raphidophytes profiles to the investigation set | |
691 } | |
692 if ($entry =~ m/RHIZA/) { | |
693 push(@profileSet,"R"); # Add the rhizaria profiles to the investigation set | |
694 } | |
695 if ($entry =~ m/SYNUR/) { | |
696 push(@profileSet,"S"); # Add the synurophyceae profiles to the investigation set | |
697 } | |
698 if ($entry =~ m/TRACHE/) { | |
699 push(@profileSet,"T"); # Add the tracheophyta profiles to the investigation set | |
700 } | |
701 if ($entry =~ m/PLANTS/) { | |
702 push(@profileSet,"T"); # Add the tracheophyta profiles to the investigation set | |
703 } | |
704 if ($entry =~ m/EUSTIG/) { | |
705 push(@profileSet,"U"); # Add the eustigmatophytes profiles to the investigation set | |
706 } | |
707 if ($entry =~ m/APUSO/) { | |
708 push(@profileSet,"X"); # Add the apusozoa profiles to the investigation set | |
709 } | |
710 if ($entry =~ m/PARAB/) { | |
711 push(@profileSet,"Y"); # Add the parabasalia profiles to the investigation set | |
712 } | |
713 } | |
714 } | |
715 } | |
716 | |
717 foreach $set (@profileSet) { # For each set of profiles in the the full profile set for investigation | |
718 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Determine the path to the HMM-file | |
719 chomp($modelCount = `grep -c "//" $hmmPath`); # Count the number of models in the HMM-file | |
720 push(@modelCount,$modelCount); # Add the number of models in this HMM-file to the list of model counts | |
721 if ($reset == 1) { | |
722 `rm -f $hmmPath.h3* 2> /dev/null`; # Delete old HMM-files | |
723 `hmmpress $hmmPath 2> /dev/null`; # Prepare the HMM-file for searching | |
724 ## Redirecting stderr is a quick and dirty solution to get rid of the messages... Could be made more elegant | |
725 } | |
726 } | |
727 | |
728 ## Clean-up input files and create complementary strand if needed | |
729 ## Get the current time and output an info message | |
730 $now = localtime; | |
731 if ($silent == 0) { | |
732 print STDERR "$now : Checking and handling input sequence data (should not take long)...\n"; | |
733 } | |
734 | |
735 ## Open the summary file for writing | |
736 if ($out_sum == 1) { # If summary output is on | |
737 open (SUMMARY, ">>$output.summary.txt"); # Append to the summary file | |
738 } | |
739 | |
740 if ($input ne "") { # If an input file is given | |
741 ## Read from file | |
742 open (SEQUENCES, $input); # Open the input file for reading | |
743 open (MAIN, ">$tempDir/main.fasta"); # Create a temporary file for storing the cleaned sequences representing the main strand | |
744 open (COMPLEMENT, ">$tempDir/complement.fasta"); # Create a temporary file for storing the cleaned sequences representing the complementary strand | |
745 $inputSequenceCount = 0; # Reset input sequence counter | |
746 while ($sequence = <SEQUENCES>) { # Repeat for every line in the input file | |
747 chomp($sequence); # Truncate any potential line feeds | |
748 $sequence =~ tr/\r\n//d; # Remove all carriage return and new line characters | |
749 if (substr($sequence,0,1) eq ">") { # If a new FASTA entry is found in the input file | |
750 $inputSequenceCount++; # Add one to the input sequence counter | |
751 print MAIN $mainSeq . "\n"; # Write the previous main DNA sequence to the main sequence file | |
752 print MAIN $sequence . " main\n"; # Write the definition line of the new sequence to the main sequence file | |
753 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database | |
754 $headers{"$sequenceID"} = $header; # Add the header to the header database | |
755 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences | |
756 ($sequenceID) = split(" ",substr($sequence,1)); | |
757 $header = $sequence; # Save the sequence header | |
758 $mainSeq = ""; # Empty the main sequence entry | |
759 if ($complement == 1) { # If the complementary file should be written | |
760 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence | |
761 print COMPLEMENT $complementSeq . "\n"; # Write the previous complementary DNA sequence to the complementary sequence file | |
762 print COMPLEMENT $sequence . " complement\n"; # Write the definition line of the new sequence to the complement sequence file | |
763 $complementSeq = ""; # Empty the complementary sequence entry | |
764 } | |
765 } else { # If this line is just a continuation of the current DNA sequence | |
766 $mseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $mseq | |
767 $mseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment) | |
768 $mseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase | |
769 $mseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters | |
770 $mseq =~ tr/U/T/; # Exchanges U:s for T:s (Uracil to Thymine, good if input was RNA sequence) | |
771 $mainSeq = $mainSeq . $mseq; # Add the intermediate DNA sequence to the end of the main DNA sequence entry | |
772 | |
773 if ($complement == 1) { # If the complementary file should be written | |
774 $cseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $cseq | |
775 $cseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment) | |
776 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase | |
777 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters | |
778 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base | |
779 $complementSeq = $complementSeq . $cseq; # Add the intermediate DNA sequence to the end of the complementary DNA sequence entry | |
780 } | |
781 } | |
782 } | |
783 ## When the input file's end is reached | |
784 print MAIN $mainSeq . "\n"; # Write the last main DNA sequence to the main sequence file | |
785 if ($complement == 1) { # If the complementary file should be written | |
786 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence | |
787 print COMPLEMENT $complementSeq . "\n"; # Write the last complementary DNA sequence to the complementary sequence file | |
788 } | |
789 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database | |
790 $headers{"$sequenceID"} = $header; # Add the header to the header database | |
791 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences | |
792 $mainSeq = ""; # Empty the main sequence entry | |
793 $complementSeq = ""; # Empty the complementary sequence entry | |
794 close (SEQUENCES); # Close the sequence input file | |
795 close (COMPLEMENT); # Close the complementary output file | |
796 close (MAIN); # Close the main output file | |
797 } else { # If no input file is supplied, then read from stdin instead | |
798 $input = "$tempDir/main.fasta"; # Set up a temporary input file path | |
799 open (MAIN, ">$tempDir/main.fasta"); # Create a temporary file for storing the cleaned sequences representing the main strand | |
800 open (COMPLEMENT, ">$tempDir/complement.fasta"); # Create a temporary file for storing the cleaned sequences representing the complementary strand | |
801 $inputSequenceCount = 0; # Reset input sequence counter | |
802 while ($sequence = <STDIN>) { # Repeat for every line in the standard input | |
803 chomp($sequence); # Truncate any potential line feeds | |
804 if (substr($sequence,0,1) eq ">") { # If a new FASTA entry is found in the input | |
805 $inputSequenceCount++; # Add one to the input sequence counter | |
806 print MAIN $mainSeq . "\n"; # Write the previous main DNA sequence to the main sequence file | |
807 print MAIN $sequence . " main\n"; # Write the definition line of the new sequence to the main sequence file | |
808 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database | |
809 $headers{"$sequenceID"} = $header; # Add the header to the header database | |
810 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences | |
811 $sequenceID = split(" ",substr($sequence,1)); | |
812 $header = $sequence; # Save the sequence header | |
813 $mainSeq = ""; # Empty the main sequence entry | |
814 if ($complement == 1) { # If the complementary file should be written | |
815 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence | |
816 print COMPLEMENT $complementSeq . "\n"; # Write the previous complementary DNA sequence to the complementary sequence file | |
817 print COMPLEMENT $sequence . " complement\n"; # Write the definition line of the new sequence to the complement sequence file | |
818 $complementSeq = ""; # Empty the complementary sequence entry | |
819 } | |
820 } else { # If this line is just a continuation of the current DNA sequence | |
821 $mseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $mseq | |
822 $mseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment) | |
823 $mseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase | |
824 $mseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters | |
825 $mseq =~ tr/U/T/; # Exchanges U:s for T:s (Uracil to Thymine, good if input was RNA sequence) | |
826 $mainSeq = $mainSeq . $mseq; # Add the intermediate DNA sequence to the end of the main DNA sequence entry | |
827 | |
828 if ($complement == 1) { # If the complementary file should be written | |
829 $cseq = $sequence; # Store this part of the DNA sequence in the intermediate varaible $cseq | |
830 $cseq =~ s/[ .-]//g; # Remove any gap characters present in this sequence part (good if input was an alignment) | |
831 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase | |
832 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters | |
833 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base | |
834 $complementSeq = $complementSeq . $cseq; # Add the intermediate DNA sequence to the end of the complementary DNA sequence entry | |
835 } | |
836 } | |
837 } | |
838 ## When the input file's end is reached | |
839 print MAIN $mainSeq . "\n"; # Write the last main DNA sequence to the main sequence file | |
840 if ($complement == 1) { # If the complementary file should be written | |
841 $complementSeq = reverse($complementSeq); # Reverse the complementary DNA sequence | |
842 print COMPLEMENT $complementSeq . "\n"; # Write the last complementary DNA sequence to the complementary sequence file | |
843 } | |
844 $sequenceDB{"$sequenceID"} = $mainSeq; # Add sequence to sequence database | |
845 $headers{"$sequenceID"} = $header; # Add the header to the header database | |
846 push(@sequenceOrder,$sequenceID); # Add this sequence ID to the ordered list of sequences | |
847 $mainSeq = ""; # Empty the main sequence entry | |
848 $complementSeq = ""; # Empty the complementary sequence entry | |
849 close (COMPLEMENT); # Close the complementary output file | |
850 close (MAIN); # Close the main output file | |
851 } | |
852 | |
853 if ($out_sum == 1) { # If summary output should be written | |
854 print SUMMARY "Number of sequences in input file: \t$inputSequenceCount\n"; # Write info on the number of input sequences to the summary file | |
855 } | |
856 | |
857 | |
858 ## Perform HMM-scan | |
859 if ($hmmscan eq "") { # If a pre-computed hmmscan output file is not supplied | |
860 if ($heuristics == 0) { # If HMMER's heuristic filtering should not be used | |
861 $heurMax = "--max"; # Set the heurMax to "--max" (indicating that HMMER should turn off filtering) | |
862 } else { | |
863 $heurMax = ""; # Set the heurMax to empty (indicating that HMMER should turn on filtering) | |
864 } | |
865 if ($multi_thread == 0) { # If multi-threading is off | |
866 ## Get the current time and output info message | |
867 $now = localtime; | |
868 if ($silent == 0) { | |
869 print STDERR "$now : Comparing sequences to HMM database (this may take a long while)...\n"; | |
870 } | |
871 foreach $set (@profileSet) { # Go sequentially through all profile sets to search for | |
872 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set | |
873 if ($search_eval ne "") { # If E-value cutoff is use for the search | |
874 hmmerSearch("hmmscan --cpu $cpu $heurMax -E $search_eval $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with E-value cutoff | |
875 } else { # If score cutoff is use for the search | |
876 hmmerSearch("hmmscan --cpu $cpu $heurMax -T $search_score $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with score cutoff | |
877 } | |
878 if ($complement == 1) { # If the complementary file should be scanned | |
879 if ($search_eval ne "") { # If E-value cutoff is use for the search | |
880 hmmerSearch("hmmscan --cpu $cpu $heurMax -E $search_eval $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with E-value cutoff | |
881 } else { # If score cutoff is use for the search | |
882 hmmerSearch("hmmscan --cpu $cpu $heurMax -T $search_score $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with score cutoff | |
883 } | |
884 } | |
885 } | |
886 } else { # If multi-threading is on | |
887 ## Get the current time and output info message | |
888 $now = localtime; | |
889 if ($silent == 0) { | |
890 print STDERR "$now : Doing paralellised comparison to HMM database (this may take a long while)...\n"; | |
891 } | |
892 | |
893 ## Determining number of cpus per thread | |
894 if ($complement == 1) { # If the complementary file should be scanned | |
895 $hmmcpu = int(0.5 * $cpu / scalar(@profileSet)); # Assign X CPUs to each thread, X = 0.5 * (TOTAL_CPUs_USED) / (TOTAL_NUMBER_OF_PROFILE_SETS) | |
896 } else { # If the complementary file should not be scanned | |
897 $hmmcpu = int($cpu / scalar(@profileSet)); # Assign X CPUs to each thread, X = (TOTAL_CPUs_USED) / (TOTAL_NUMBER_OF_PROFILE_SETS) | |
898 } | |
899 if ($hmmcpu < 1) { # If the number of CPUs per thread is smaller than 1 | |
900 $hmmcpu = 1; # Give each thread at least one CPU to work on | |
901 } | |
902 ## Main strand searches... | |
903 $cpuCount = 0; | |
904 foreach $set (@profileSet) { # Go through each profile set to investigate | |
905 if ($cpuCount < $cpu) { | |
906 $cpuCount++; | |
907 $pid = fork(); # Fork off a copy of this process for this set | |
908 } else { | |
909 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number | |
910 $pid = fork(); # Fork off a copy of this process for this set | |
911 } | |
912 if ($pid != 0) { # If this is the parent process | |
913 push(@pids,$pid); # Add the new process ID to the list of active process IDs | |
914 } else { # If this is the new child process | |
915 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set | |
916 if ($search_eval ne "") { # If E-value cutoff is use for the search | |
917 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -E $search_eval $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with E-value cutoff | |
918 } else { # If score cutoff is use for the search | |
919 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -T $search_score $hmmPath $tempDir/main.fasta","$tempDir/main.$set.hmmscan","M",$set); # Call HMMER with score cutoff | |
920 } | |
921 ## Stop child process... | |
922 exit; # Exits the child process | |
923 } | |
924 } | |
925 ## Revese strand searches... | |
926 if ($complement == 1) { # If the complementary file should be scanned | |
927 foreach $set (@profileSet) { # Go through each profile set to investigate | |
928 if ($cpuCount < $cpu) { | |
929 $cpuCount++; | |
930 $pid = fork(); # Fork off a copy of this process for this set | |
931 } else { | |
932 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number | |
933 $pid = fork(); # Fork off a copy of this process for this set | |
934 } | |
935 if ($pid != 0) { # If this is the parent process | |
936 push(@pids,$pid); # Add the new process ID to the list of active process IDs | |
937 } else { # If this is the new child process | |
938 $hmmPath = $profileDB . "/" . $set . ".hmm"; # Set the path to the HMM-file of the current set | |
939 if ($search_eval ne "") { # If E-value cutoff is use for the search | |
940 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -E $search_eval $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with E-value cutoff | |
941 } else { # If score cutoff is use for the search | |
942 hmmerSearch("hmmscan --cpu $hmmcpu $heurMax -T $search_score $hmmPath $tempDir/complement.fasta","$tempDir/complement.$set.hmmscan","C",$set); # Call HMMER with score cutoff | |
943 } | |
944 ## Stop child process... | |
945 exit; # Exits the child process | |
946 } | |
947 } | |
948 } | |
949 ## Get the current time and output the active process IDs | |
950 $now = localtime; | |
951 #print STDERR " $now : Active PIDs: "; | |
952 #foreach $p (@pids) { # Go through the list of PIDs | |
953 # print STDERR "$p "; # Print the PID | |
954 #} | |
955 #print STDERR "\n"; # Print a new line | |
956 do { # Loop until all child PIDs have finished. | |
957 $deceasedPID = wait(); # Wait until a PID is finished, and gather its number | |
958 $now = localtime; # Get the current time | |
959 if ($deceasedPID > -1) { # If the PID that finished wasn't the last active one | |
960 # print STDERR " $now : PID $deceasedPID finished.\n"; # Print finished PID | |
961 } else { # If PID that finished was the last | |
962 print STDERR " $now : All processes finished.\n"; # Print that all PIDs have finished | |
963 } | |
964 } until (wait() == -1); # Do this loop until all PIDs have finished | |
965 $now = localtime; # Get current time | |
966 print STDERR "$now : Parallel HMM-scan finished.\n"; # Print informative finishing message | |
967 } | |
968 } else { # If a pre-computed hmmscan file is supplied then | |
969 ## Get the current time and output that the hmmscan step is skipped | |
970 $now = localtime; | |
971 if ($silent == 0) { | |
972 print STDERR "$now : Skipping hmmscan! Using $hmmscan as input for the analysis instead.\n"; | |
973 } | |
974 } | |
975 | |
976 ## Analyse HMM-scan output | |
977 ## Get the current time and output info | |
978 $now = localtime; | |
979 if ($silent == 0) { | |
980 print STDERR "$now : Analysing results of HMM-scan (this might take quite some time)...\n"; | |
981 } | |
982 | |
983 ## Set up output files | |
984 if ($out_table == 1) { # If table output is on | |
985 open (TABLE, ">$output.hmmer.table"); # Create a table output file | |
986 } | |
987 if ($out_graph == 1) { # If graphical output is on | |
988 open (GRAPH, ">$output.graph"); # Create a graph output file | |
989 } | |
990 if ($out_not == 1) { # If not-found output is on | |
991 open (NOTFOUND, ">$tempDir/$output\_hmmer_no_detections.txt"); # Create a HMMER not-found output file | |
992 } | |
993 | |
994 $setI = 0; # Set the profile set indicator to zero | |
995 foreach $set (@profileSet) { # Go through all the profile sets to be investigated | |
996 for ($co = 0; $co <= 1; $co++) { # Do main (and complementary) strand analysis in order | |
997 if ($co > 0) { # If main strand analysis is finished | |
998 if ($complement == 1) { # If complementary strand should be analysed | |
999 open (HMMOUTPUT, "$tempDir/complement.$set.hmmscan"); # Open hmmscan output for reading | |
1000 open (SEQUENCES, "$tempDir/complement.fasta"); # Open complementary sequence file for reading | |
1001 if ($out_table == 1) { # If table output is on, write a header for this set | |
1002 print TABLE "***********************************************************\n"; | |
1003 print TABLE "$set matches on complementary strand:\n"; | |
1004 } | |
1005 if ($out_graph == 1) { # If graphical output is on, write a header for this set | |
1006 print GRAPH "***********************************************************\n"; | |
1007 print GRAPH "$set matches on complementary strand:\n"; | |
1008 } | |
1009 } else { # If complementary strand should not be analysed | |
1010 last; # Exit this loop | |
1011 } | |
1012 } | |
1013 if ($co == 0) { # If main strand analysis is not finished | |
1014 open (HMMOUTPUT, "$tempDir/main.$set.hmmscan"); # Open hmmscan output for reading | |
1015 open (SEQUENCES, "$tempDir/main.fasta"); # Open main sequence file for reading | |
1016 if ($out_table == 1) { # If table output is on, write a header for this set | |
1017 print TABLE "***********************************************************\n"; | |
1018 print TABLE "$set matches on main strand:\n"; | |
1019 } | |
1020 if ($out_graph == 1) { # If graphical output is on, write a header for this set | |
1021 print GRAPH "***********************************************************\n"; | |
1022 print GRAPH "$set matches on main strand:\n"; | |
1023 } | |
1024 } | |
1025 ## Read and analyse hmmscan output file | |
1026 while ($line = <HMMOUTPUT>) { # Read in the hmmscan output file, line by line | |
1027 chomp($line); # Remove any potential line feeds | |
1028 if (substr($line,0,13) eq "## New query:") { # If this line begin with "## New query:", then this is a new entry | |
1029 undef %hits; # Empty the hits hash | |
1030 undef %evals; # Empty the e-value hash | |
1031 undef %scores; # Empty the score hash | |
1032 $querytemp = substr($line,14); # Extract everything from this line, except for the start ("## New query:") | |
1033 ($query,$length) = split('\t',$querytemp); # Split query name, length and DNA sequence | |
1034 if ($co == 0) { # If main strand analysis | |
1035 $DNA = $sequenceDB{"$query"}; | |
1036 } else { # If complementary strand | |
1037 $cseq = $sequenceDB{"$query"}; # Store the DNA sequence in the intermediate varaible $cseq | |
1038 $cseq =~ tr/[a-z]/[A-Z]/; # Make all letters uppercase | |
1039 $cseq =~ s/[^A-Z]//g; # Remove all non-alphabetic characters | |
1040 $cseq =~ tr/ACGTURYSWKMBDHVN/TGCAAYRWSMKVHDBN/; # Replace all characters with its complementary base | |
1041 $DNA = reverse($cseq); | |
1042 } | |
1043 } else { | |
1044 | |
1045 if ($line ne "//") { | |
1046 ## Find domain annotations... | |
1047 ($query,$matchProfile,$length,$domNo,$sign,$score,$bias,$cE,$iE,$hmmFrom,$hmmTo,$hmmends,$queryFrom,$queryTo,$queryends,$envFrom,$envTo,$envends,$acc) = split('\t',$line); # Split the line into a collection of stat variables | |
1048 | |
1049 $useQueryFrom = $queryFrom; | |
1050 if ($hmmFrom > 1) { # If the HMM-profile is not matched from the beginning | |
1051 $hmmDiff = $hmmFrom - 1; | |
1052 if ($useQueryFrom > $hmmDiff) { | |
1053 $useQueryFrom = $queryFrom - $hmmDiff; | |
1054 } else { | |
1055 $useQueryFrom = 1; | |
1056 } | |
1057 } | |
1058 | |
1059 if (uc($anchor) eq "HMM") { | |
1060 $anchorLen = $hmmTo - $hmmFrom + 1; | |
1061 } else { | |
1062 $anchorLen = $anchor; | |
1063 } | |
1064 | |
1065 | |
1066 $query_profile_match = $query . ":" . $matchProfile; | |
1067 $profileExists = 0; # Assume that the newly found match profile ($matchProfile) is not already found for this sequence | |
1068 if (exists($hits{$query_profile_match})) { # If a profile from the list is the same as the match profile | |
1069 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE) = split('\t',$hits{$query_profile_match}); # Split the entry in list into stat variables | |
1070 if ($iE < $hitE) { # If the new match profile has a smaller E-value than the one from the list | |
1071 $hits{$query_profile_match} = "$useQueryFrom\t$envTo\t$matchProfile\t$score\t$iE\t$anchorLen"; # Replace the data in the hit list with the data for the newly found match profile | |
1072 $evals{$query_profile_match} = $iE; # Replace the E-value in the hit list with the E-value for the newly found match profile | |
1073 $scores{$query_profile_match} = $score; # Replace the score in the hit list with the score for the newly found match profile | |
1074 } | |
1075 $profileExists = 1; # Indicate that this match profile was found in the hit list | |
1076 } | |
1077 if ($profileExists == 0) { # If the match profile was not found in the hit list | |
1078 if (($iE <= $E) && ($score >= $S)) { # If this hits lives up to the minimal score and E-value cutoffs | |
1079 $hits{$query_profile_match} = "$useQueryFrom\t$envTo\t$matchProfile\t$score\t$iE\t$anchorLen"; # Add the data for the newly found match profile | |
1080 $evals{$query_profile_match} = $iE; # Add the E-value for the newly found match profile | |
1081 $scores{$query_profile_match} = $score; # Add the score for the newly found match profile | |
1082 } | |
1083 } | |
1084 } else { # If the line only contains "//", the end of this sequence's hmmscan entry is reached | |
1085 ## Save analysis results | |
1086 @sortedKeys = sort {$hits{$a} <=> $hits{$b}} keys(%hits); # Sort the the list of hits numerically ascending (smallest first) | |
1087 undef @sortedHits; | |
1088 undef @scores; | |
1089 undef @evals; | |
1090 foreach $key (@sortedKeys) { | |
1091 push(@sortedHits, $hits{$key}); # Add the hit to the list of hits numerically ascending (smallest first) | |
1092 push(@scores, $scores{$key}); # Add the score to the scores array | |
1093 push(@evals, $evals{$key}); # Add the E-value to the evals array | |
1094 } | |
1095 | |
1096 ## If the number of hits > N, the min eval < E and the max score > S then include query sequence | |
1097 ## OR if a single domain satisfies the thresholds and this is allowed, include it! | |
1098 if ( ((scalar(@sortedHits) >= $N) && (min(@evals) <= $E) && (max(@scores) >= $S)) || | |
1099 ((scalar(@sortedHits) > 0) && ($allow_single_E >= 0) && (min(@evals) <= $allow_single_E) && (max(@scores) >= $allow_single_score)) ) { | |
1100 if ($debug == 1) { # If debugging mode is on | |
1101 print STDERR $query . " :\t" . scalar(@sortedHits) . "\t" . min(@evals) . "\t" . max(@scores) . "\n"; # Print some top hit statistics | |
1102 } | |
1103 | |
1104 ## Save some total stats to be able to determine origin of ITS sequence | |
1105 if (scalar(@evals) > 0) { # If there are any E-values stored | |
1106 $averageE = sum(@evals) / scalar(@evals); # Calculate the average E-value for this profile set | |
1107 $averageScore = sum(@scores) / scalar(@scores); # Calculate the average score for this profile set | |
1108 $numberOfDomains = scalar(@sortedHits); # Calculate the number of domains matched on this sequence | |
1109 | |
1110 #$scoreSum = sum(@scores) / @modelCount[$setI]; # Calculate score sum as: sum / (no. of profiles of this given type) | |
1111 $scoreSum = sum(@scores) / 4; # Calculate score sum as: sum / (no. of profiles of this given type) | |
1112 | |
1113 $saveThis = "$query\t$set\t$co\t$numberOfDomains\t$averageE\t$averageScore\t$scoreSum\t$DNA\t"; # Collect the variables to save for this sequence and this profile set | |
1114 foreach $hit (@sortedHits) { # Go through the list of hits and add specific information to save from each hit | |
1115 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$hitanchorlen) = split('\t',$hit); # Extract information from this hit | |
1116 $saveThis = $saveThis . "$hitFrom;$hitTo;$hitProfile;$hitScore;$hitE;$hitanchorlen\t"; # Add information to the list of variables to save | |
1117 } | |
1118 #push(@allHits, $saveThis); # Add this information to the collection of all hits for this sequence, across all profile sets | |
1119 if (exists($allHits{$query})) { | |
1120 $allHits{$query} = $allHits{$query} . "\n" . $saveThis; | |
1121 } else { | |
1122 $allHits{$query} = $saveThis; | |
1123 } | |
1124 } | |
1125 | |
1126 if ($out_table == 1) { # If table output is on | |
1127 print TABLE $query . "\t" . $length . "\t"; # Print query and length information to table | |
1128 foreach $hit (@sortedHits) { # Go through each hit in the hit list | |
1129 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$hitanchorlen) = split('\t',$hit); # Extract data corresponding to this hit | |
1130 print TABLE "$hitFrom - $hitTo: $hitProfile ($hitScore, $hitE)\t"; # Print hit information to table | |
1131 } | |
1132 print TABLE "\n"; # Print new line | |
1133 } | |
1134 | |
1135 if ($out_graph == 1) { # If graphical output is on | |
1136 print GRAPH ">> " . $query . "\t" . $length . " bp\n"; # Print a sequence header | |
1137 $insertPoint = 0; # Set the domain insert point to beginning of line | |
1138 $hi = 0; # Set hit number to zero | |
1139 foreach $hit (@sortedHits) { # Go through the hit list | |
1140 ($hitFrom,$hitTo,$hitProfile,$hitScore,$hitE,$anchorLen) = split('\t',$hit); # Split the hit into stat variables | |
1141 if ($graph_scale == 0) { # If the graph scale is scaled individually to 100% for each sequence | |
1142 $pFrom = $hitFrom / $length * 100; # Set the profile start on graph relative to its position in the sequence | |
1143 $pTo = $hitTo / $length * 100; # Set the profile end on graph relative to its position in the sequence | |
1144 $pEnd = 100; # Set the end of the sequence graph to be at 100 | |
1145 } else { # If the scale is the same for all sequences | |
1146 $pFrom = $hitFrom * $graph_scale; # Set the profile start on graph scaled to the parameter given | |
1147 $pTo = $hitTo * $graph_scale; # Set the profile end on graph scaled to the parameter given | |
1148 $pEnd = $length * $graph_scale; # Set the end of the sequence graph to be at the end of the sequence scaled to the parameter given | |
1149 } | |
1150 for ($insertPoint = $insertPoint; $insertPoint <= $pFrom; $insertPoint++) { # Go forward through the sequence, moving the insert point one step at a time until the beginning of the next profile is reached | |
1151 print GRAPH "-"; # Print a "-" | |
1152 } | |
1153 print GRAPH substr($hitProfile,2,3); # When the profile is reached, print its name | |
1154 $insertPoint = $insertPoint + 3; # Move the insert point three steps forward, to account for the inserted name | |
1155 ($nextHitStart,$nextHitEnd,$nextProfile) = split('\t',@sortedHits[$hi + 1]); # Check where the next hit in the list is located | |
1156 if (($nextHitStart <= $hitTo) && ($nextHitStart > 0)) { # If the next hit in the list overlaps with this profile | |
1157 if ($graph_scale == 0) { # If the scale is relative | |
1158 $pTo = $nextHitStart / $length * 100 - 1; # Change the profile end on the graph to be where this next profile starts | |
1159 } else { # If the scale is the same for all sequences | |
1160 $pTo = $nextHitStart * $graph_scale - 1; # Change the profile end on the graph to be where this next profile starts | |
1161 } | |
1162 } | |
1163 for ($insertPoint = $insertPoint; $insertPoint <= $pTo; $insertPoint++) { # Go forward through the sequence, moving the insert point one step at a time until the end of the current profile is reached | |
1164 print GRAPH "="; # Print a "=" | |
1165 } | |
1166 if (($nextHitStart <= $hitTo) && ($nextHitStart > 0)) { # If the next hit in the list overlaps with this profile | |
1167 print GRAPH ">"; # Print a ">" to indicate the profile overlap | |
1168 $insertPoint++; # Move the insert point one additional step forward to account for the ">" inserted | |
1169 } | |
1170 $hi++; # Increase the hit number by one | |
1171 } | |
1172 for ($insertPoint = $insertPoint; $insertPoint <= $pEnd; $insertPoint++) { # If there is no more profile matches to sequence, go forward through the sequence, moving the insert point one step at a time until the end of the sequence is reached | |
1173 print GRAPH "-"; # Print a "-" | |
1174 } | |
1175 print GRAPH "\n"; # Print a new line, indicating the end of this sequence entry | |
1176 } | |
1177 } else { # If this sequence didn't find any good-enough profile matches | |
1178 if ($out_not == 1) { # If not-found output is on | |
1179 print NOTFOUND $query . "\n"; # Print the name of this query to the not-found list | |
1180 } | |
1181 } | |
1182 } | |
1183 } | |
1184 } | |
1185 close (SEQUENCES); # Close the input sequence file | |
1186 close (HMMOUTPUT); # Close the hmmscan output file | |
1187 } | |
1188 $setI++; # Add one to the profile set indicator | |
1189 } | |
1190 | |
1191 ## Close output files | |
1192 if ($out_table == 1) { # If table output is on, close the table file | |
1193 close (TABLE); | |
1194 } | |
1195 if ($out_graph == 1) { # If graphical output is on, close the graph file | |
1196 close (GRAPH); | |
1197 } | |
1198 if ($out_not == 1) { # If not-found output is on, close the not-found file | |
1199 close (NOTFOUND); | |
1200 #$profileCount = scalar(@profileSet); # Count the number of profile sets | |
1201 #if ($complement == 1) { # If complementary strand was scanned | |
1202 # $profileCount = $profileCount * 2; # Double the number of profile sets that was investigated (and thus the number of not-founds that could at max be found) | |
1203 #} | |
1204 #`sort $tempDir/hmmer_no_detections.txt | uniq -c | grep " *$profileCount " | sed "s/ *$profileCount //" > $output\_no_detections.txt`; # Sort the not-found list, count the number of profile sets having no matches for each query. Save those that have only non-matches to the hmmer-not-found file | |
1205 } | |
1206 | |
1207 | |
1208 ## Create total collected output and FASTA output | |
1209 | |
1210 if ($out_results == 1) { | |
1211 open (RESULTS, ">$output.extraction.results"); # Create a results file | |
1212 } | |
1213 open (RAWOUT, ">$tempDir/ITSx_output.raw"); # Create a raw output file for ALL data | |
1214 open (PROBLEM, ">$output.problematic.txt"); # Create a file for problematic entries | |
1215 $foundProblem = 0; | |
1216 if ($out_pos == 1) { | |
1217 open (POS, ">$output.positions.txt"); # Create a positions file | |
1218 } | |
1219 if ($out_fasta == 1) { # If FASTA output should be written | |
1220 open (FASTA, ">$output.full.fasta"); # Create a FASTA output file for found sequences | |
1221 if ($allow_reorder == 0) { # If reordering of domains is not allowed | |
1222 open (CHIMERA, ">$output.chimeric.fasta"); # Create a FASTA file for potential chimera sequences with profile matches in the wrong order | |
1223 $foundChimera = 0; | |
1224 } | |
1225 if ($out_partial > 0) { | |
1226 open (FULLPARTIAL, ">$output.full_and_partial.fasta"); | |
1227 } | |
1228 } | |
1229 | |
1230 if ($out_joined == 1) { # If SSU FASTA output should be written | |
1231 open (JOINED, ">$output.joined.fasta"); | |
1232 } | |
1233 if ($out_ssu == 1) { # If SSU FASTA output should be written | |
1234 open (SSU, ">$output.SSU.fasta"); | |
1235 } | |
1236 if ($out_lsu == 1) { # If LSU FASTA output should be written | |
1237 open (LSU, ">$output.LSU.fasta"); | |
1238 } | |
1239 if ($out_58S == 1) { # If 5.8S FASTA output should be written | |
1240 open (MID, ">$output.5_8S.fasta"); | |
1241 } | |
1242 if ($out_its1 == 1) { # If ITS1 FASTA output should be written | |
1243 open (ITS1, ">$output.ITS1.fasta"); | |
1244 if ($out_partial > 0) { | |
1245 open (ITS1PARTIAL, ">$output.ITS1.full_and_partial.fasta"); | |
1246 } | |
1247 } | |
1248 if ($out_its2 == 1) { # If ITS2 FASTA output should be written | |
1249 open (ITS2, ">$output.ITS2.fasta"); | |
1250 if ($out_partial > 0) { | |
1251 open (ITS2PARTIAL, ">$output.ITS2.full_and_partial.fasta"); | |
1252 } | |
1253 } | |
1254 if ($out_concat == 1) { # If concatenated output should be written | |
1255 open (CONCAT, ">$output.concat.fasta"); | |
1256 } | |
1257 | |
1258 undef @sortedHits; # Empty the array of sorted hits | |
1259 | |
1260 # @sortedHits = sort @allHits; # Sort the full list of hits in alphabetical order (to be able to analyse all sequences with same ID at once) | |
1261 if ($out_not == 1) { # If not-found output is on | |
1262 open (NOTFOUND, ">$output\_no_detections.txt"); # Create a not-found output file | |
1263 $noDetect = 0; | |
1264 } | |
1265 foreach $sequenceID (@sequenceOrder) { # Sort the full list of hits in their original order (to be able to analyse all sequences with same ID at once) | |
1266 if ($sequenceID ne "") { | |
1267 $countsInList = 0; | |
1268 if (exists($allHits{$sequenceID})) { | |
1269 @allHits = split('\n',$allHits{$sequenceID}); | |
1270 } else { | |
1271 undef @allHits; | |
1272 } | |
1273 foreach $line (@allHits) { | |
1274 @item = split('\t',$line); # Split the line into an array | |
1275 if (@item[0] eq $sequenceID) { # If this item corresponds to the current sequence ID | |
1276 push(@sortedHits,$line); # Add it to the sorted list of hits | |
1277 $countsInList++; | |
1278 } | |
1279 } | |
1280 if ($countsInList == 0) { # If no matches were found | |
1281 if ($out_not == 1) { # If not-found output is on | |
1282 print NOTFOUND "$sequenceID\n"; # Output the sequence ID | |
1283 $noDetect++; | |
1284 } | |
1285 } | |
1286 } | |
1287 } | |
1288 if ($out_not == 1) { # If not-found output is on | |
1289 close (NOTFOUND); | |
1290 if ($noDetect == 0) { | |
1291 `rm $output\_no_detections.txt 2> /dev/null`; | |
1292 } | |
1293 } | |
1294 | |
1295 ## Set all counts for different ITS types to zero | |
1296 undef @itsCounts; | |
1297 $itsChimeric = 0; | |
1298 $itsMain = 0; | |
1299 $itsCompl = 0; | |
1300 | |
1301 push(@sortedHits,"--END--"); # Add a last item to the sorted list, so that all items are securely saved | |
1302 $lc = 1; # Set the line count to one | |
1303 foreach $line (@sortedHits) { # Go through the list of found hits | |
1304 print RAWOUT "$line\n"; # Write the raw data associated with this hit to the raw data output file | |
1305 @item = split('\t',$line); # Split the line into an array | |
1306 ## If this sequence ID is the same as the saved ones, then add it, else empty the array sequence ID and save | |
1307 if ((@seqID[0] ne @item[0]) && (@item[0] ne "") || ($lc > scalar(@sortedHits))) { # If this sequence ID is not the same as the last one and is non-empty, or if the end of the list has been reached | |
1308 ## Save profile-type which is most likely... | |
1309 if ($priority eq "sum") { # If the sum-of-scores algorithm should be used to determine the most likely profile-type | |
1310 ## Reset variables to unrealisticly high or low values | |
1311 $best = 0; | |
1312 $bestCount = 0; | |
1313 $bestEval = 1000; | |
1314 $bestScore = -1000; | |
1315 $bestSum = -1000; | |
1316 | |
1317 for ($i = 0; $i < scalar(@seqScoreSum); $i++) { # Go through all sum-of-scores entries | |
1318 if (@seqScoreSum[$i] > $bestSum) { # If the current value is larger than the previous top value | |
1319 $best = $i; # Set the best value to be the current value | |
1320 ## Set all other best variables to those corresponding to the current value | |
1321 $bestCount = @seqDomCounts[$i]; | |
1322 $bestEval = @seqAvgE[$i]; | |
1323 $bestScore = @seqAvgScore[$i]; | |
1324 $bestSum = @seqScoreSum[$i]; | |
1325 } | |
1326 if (@seqScoreSum[$i] == $bestSum) { # If the current value is equal to the previous top value | |
1327 if (@seqDomCounts[$i] > $bestCount) { # If the current domain count is larger than the previous top domain count | |
1328 $best = $i; # Set the best value to be the current value | |
1329 ## Set all other best variables to those corresponding to the current value | |
1330 $bestCount = @seqDomCounts[$i]; | |
1331 $bestEval = @seqAvgE[$i]; | |
1332 $bestScore = @seqAvgScore[$i]; | |
1333 $bestSum = @seqScoreSum[$i]; | |
1334 } | |
1335 if (@seqDomCounts[$i] == $bestCount) { # If the current domain count is equal to the previous top domain count | |
1336 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value | |
1337 $best = $i; # Set the best value to be the current value | |
1338 ## Set all other best variables to those corresponding to the current value | |
1339 $bestCount = @seqDomCounts[$i]; | |
1340 $bestEval = @seqAvgE[$i]; | |
1341 $bestScore = @seqAvgScore[$i]; | |
1342 $bestSum = @seqScoreSum[$i]; | |
1343 } | |
1344 } | |
1345 } | |
1346 } | |
1347 } | |
1348 if ($priority eq "domains") { # If the number of found domains should be used to determine the most likely profile-type | |
1349 ## Reset variables to unrealisticly high or low values | |
1350 $best = 0; | |
1351 $bestCount = 0; | |
1352 $bestEval = 1000; | |
1353 $bestScore = -1000; | |
1354 | |
1355 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain count entries | |
1356 if (@seqDomCounts[$i] > $bestCount) { # If the current domain count is larger than the previous top domain count | |
1357 $best = $i; # Set the best value to be the current value | |
1358 ## Set all other best variables to those corresponding to the current value | |
1359 $bestCount = @seqDomCounts[$i]; | |
1360 $bestEval = @seqAvgE[$i]; | |
1361 $bestScore = @seqAvgScore[$i]; | |
1362 } | |
1363 if (@seqDomCounts[$i] == $bestCount) { # If the current domain count is equal to the previous top domain count | |
1364 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value | |
1365 $best = $i; # Set the best value to be the current value | |
1366 ## Set all other best variables to those corresponding to the current value | |
1367 $bestCount = @seqDomCounts[$i]; | |
1368 $bestEval = @seqAvgE[$i]; | |
1369 $bestScore = @seqAvgScore[$i]; | |
1370 } | |
1371 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value | |
1372 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score | |
1373 $best = $i; # Set the best value to be the current value | |
1374 ## Set all other best variables to those corresponding to the current value | |
1375 $bestCount = @seqDomCounts[$i]; | |
1376 $bestEval = @seqAvgE[$i]; | |
1377 $bestScore = @seqAvgScore[$i]; | |
1378 } | |
1379 } | |
1380 } | |
1381 } | |
1382 } | |
1383 if ($priority eq "eval") { # If the average E-value should be used to determine the most likely profile-type | |
1384 ## Reset variables to unrealisticly high or low values | |
1385 $best = 0; | |
1386 $bestCount = 0; | |
1387 $bestEval = 1000; | |
1388 $bestScore = -1000; | |
1389 | |
1390 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain counts entries | |
1391 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value | |
1392 $best = $i; # Set the best value to be the current value | |
1393 ## Set all other best variables to those corresponding to the current value | |
1394 $bestCount = @seqDomCounts[$i]; | |
1395 $bestEval = @seqAvgE[$i]; | |
1396 $bestScore = @seqAvgScore[$i]; | |
1397 } | |
1398 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value | |
1399 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score | |
1400 $best = $i; # Set the best value to be the current value | |
1401 ## Set all other best variables to those corresponding to the current value | |
1402 $bestCount = @seqDomCounts[$i]; | |
1403 $bestEval = @seqAvgE[$i]; | |
1404 $bestScore = @seqAvgScore[$i]; | |
1405 } | |
1406 if (@seqAvgScore[$i] == $bestScore) { # If the current average score is equal to the previous top average score | |
1407 if (@seqDomCounts[$i] > $bestCount) { # If the current number of domains is larger than the previous top number of domains | |
1408 $best = $i; # Set the best value to be the current value | |
1409 ## Set all other best variables to those corresponding to the current value | |
1410 $bestCount = @seqDomCounts[$i]; | |
1411 $bestEval = @seqAvgE[$i]; | |
1412 $bestScore = @seqAvgScore[$i]; | |
1413 } | |
1414 } | |
1415 } | |
1416 } | |
1417 } | |
1418 if ($priority eq "score") { # If the average score should be used to determine the most likely profile-type | |
1419 ## Reset variables to unrealisticly high or low values | |
1420 $best = 0; | |
1421 $bestCount = 0; | |
1422 $bestEval = 1000; | |
1423 $bestScore = -1000; | |
1424 | |
1425 for ($i = 0; $i < scalar(@seqDomCounts); $i++) { # Go through all domain counts entries | |
1426 if (@seqAvgScore[$i] > $bestScore) { # If the current average score is larger than the previous top average score | |
1427 $best = $i; # Set the best value to be the current value | |
1428 ## Set all other best variables to those corresponding to the current value | |
1429 $bestCount = @seqDomCounts[$i]; | |
1430 $bestEval = @seqAvgE[$i]; | |
1431 $bestScore = @seqAvgScore[$i]; | |
1432 } | |
1433 if (@seqAvgScore[$i] == $bestScore) { # If the current average score is equal to the previous top average score | |
1434 if (@seqAvgE[$i] < $bestEval) { # If the current E-value is smaller than the previous top E-value | |
1435 $best = $i; # Set the best value to be the current value | |
1436 ## Set all other best variables to those corresponding to the current value | |
1437 $bestCount = @seqDomCounts[$i]; | |
1438 $bestEval = @seqAvgE[$i]; | |
1439 $bestScore = @seqAvgScore[$i]; | |
1440 } | |
1441 if (@seqAvgE[$i] == $bestEval) { # If the current E-value is equal to the previous top E-value | |
1442 if (@seqDomCounts[$i] > $bestCount) { # If the current number of domains is larger than the previous top number of domains | |
1443 $best = $i; # Set the best value to be the current value | |
1444 ## Set all other best variables to those corresponding to the current value | |
1445 $bestCount = @seqDomCounts[$i]; | |
1446 $bestEval = @seqAvgE[$i]; | |
1447 $bestScore = @seqAvgScore[$i]; | |
1448 } | |
1449 } | |
1450 } | |
1451 } | |
1452 } | |
1453 | |
1454 if (@seqID[$best] ne "") { # If the sequence ID of the most likely profile is not empty | |
1455 | |
1456 $allanchorLens = @anchorLens[$best]; # Get the best anchor lengths | |
1457 @allanchorLens = split(',', $allanchorLens); # Split the anchor lens into an array | |
1458 | |
1459 $chimeric = 0; # Assume the sequence is not chimeric | |
1460 if ($allow_reorder == 0) { # If re-order of domain is not allowed | |
1461 $domain_order = @allSeqDomains[$best]; # Gather the order the domains are found in | |
1462 @domain_order = split(' ',$domain_order); # Split the list into an array | |
1463 @sorted_domain_order = sort {$a cmp $b} @domain_order; # Sort the array alphabetically | |
1464 for ($di = 0; $di <= scalar(@domain_order); $di++) { # Go through the sorted array | |
1465 if ((@domain_order[$di] ne @sorted_domain_order[$di]) || (@problemCode[$best] =~ m/C/)) { # Check if the order of the arrays differ at any poiny | |
1466 $chimeric = 1; # If they do differ, mark the sequence as chimeric | |
1467 } | |
1468 } | |
1469 } | |
1470 | |
1471 $seqDNALength = length(@seqDNA[$best]); # Get the length of the DNA sequence | |
1472 | |
1473 ## Print sequence and match data... | |
1474 ## Order of columns in the output file: | |
1475 ## ID Length Type Main/Compl Domains Avg.Eval Avg.Score Start End Start_domain End_domain Chimeric | |
1476 if ($out_results == 1) { | |
1477 print RESULTS @seqID[$best] . "\t" . $seqDNALength . "\t" . @seqITSType[$best] . "\t" . @seqCompl[$best] . "\t" . @seqDomCounts[$best] . "\t" . @seqAvgE[$best] . "\t" . @seqAvgScore[$best] . "\t" . @seqScoreSum[$best] . "\t" . @dnaStart[$best] . "\t" . @dnaEnd[$best] . "\t" . @startDomain[$best] . "\t" . @endDomain[$best] . "\t"; # Print sequence and match data to the results file | |
1478 if ($chimeric == 1) { # If the sequence was regarded chimeric | |
1479 print RESULTS "Chimeric\t"; # Add a chimeric tag to the entry | |
1480 } else { # If not chimeric | |
1481 print RESULTS "\t"; # Add an empty column | |
1482 } | |
1483 $allDomains = @allSeqDomains[$best]; # Get the domain order of the entry | |
1484 $allDomains =~ tr/ /,/; # Replace spaces with commas in the domain order string | |
1485 $allDomains = substr($allDomains,0,length($allDomains) - 1); # Remove the last character (a comma) | |
1486 print RESULTS $allDomains; # Write the domain order to the results file | |
1487 print RESULTS "\t"; # Write a tab to the results file | |
1488 } | |
1489 | |
1490 if ($out_pos == 1) { | |
1491 $out_all_pos = 1; | |
1492 if ($out_all_pos == 1) { # Output positions of all domains | |
1493 $seqPartLen = @dnaEnd[$best] - @dnaStart[$best] + 1; | |
1494 if ($seqPartLen < 0) { | |
1495 $seqPartLen = $seqPartLen * -1; | |
1496 } | |
1497 ## Print the positions of all identified domains to the position file | |
1498 print POS @seqID[$best] . "\t" . $seqDNALength . " bp." . "\t"; | |
1499 if (@problemCode[$best] !~ m/S/) { | |
1500 print POS "SSU: " . @ssuStart[$best] . "-" . @ssuEnd[$best] . "\t"; | |
1501 } else { | |
1502 print POS "SSU: Not found\t"; | |
1503 } | |
1504 if ((@problemCode[$best] =~ m/X/) || ((@problemCode[$best] =~ m/[15]/) && (@problemCode[$best] =~ m/S/))) { | |
1505 print POS "ITS1: Not found\t"; | |
1506 } else { | |
1507 if (@problemCode[$best] =~ m/O/) { | |
1508 print POS "ITS1: " . (@ssuEnd[$best] + 1) . "-" . (@ssuEnd[$best] + 1) . "\t"; | |
1509 } else { | |
1510 print POS "ITS1: " . @its1Start[$best] . "-" . @its1End[$best] . "\t"; | |
1511 } | |
1512 } | |
1513 if (@problemCode[$best] !~ m/[125OP]/) { | |
1514 print POS "5.8S: " . @midStart[$best] . "-" . @midEnd[$best] . "\t"; | |
1515 } else { | |
1516 if (@problemCode[$best] =~ m/5/) { | |
1517 print POS "5.8S: Not found\t"; | |
1518 } else { | |
1519 if (@problemCode[$best] =~ m/1/) { | |
1520 print POS "5.8S: No start\t"; | |
1521 } else { | |
1522 if (@problemCode[$best] =~ m/O/) { | |
1523 print POS "5.8S: Overlap SSU\t"; | |
1524 } else { | |
1525 if (@problemCode[$best] =~ m/P/) { | |
1526 print POS "5.8S: Overlap LSU\t"; | |
1527 } else { | |
1528 print POS "5.8S: No end\t"; | |
1529 } | |
1530 } | |
1531 } | |
1532 } | |
1533 } | |
1534 if ((@problemCode[$best] =~ m/Y/) ||((@problemCode[$best] =~ m/[25]/) && (@problemCode[$best] =~ m/L/))) { | |
1535 print POS "ITS2: Not found\t"; | |
1536 } else { | |
1537 if (@problemCode[$best] =~ m/O/) { | |
1538 print POS "ITS2: " . (@lsuStart[$best] - 1) . "-" . (@lsuStart[$best] - 1) . "\t"; | |
1539 } else { | |
1540 print POS "ITS2: " . @its2Start[$best] . "-" . @its2End[$best] . "\t"; | |
1541 } | |
1542 } | |
1543 if (@problemCode[$best] !~ m/L/) { | |
1544 print POS "LSU: " . @lsuStart[$best] . "-" . @lsuEnd[$best] . "\t"; | |
1545 } else { | |
1546 print POS "LSU: Not found" . "\t"; | |
1547 } | |
1548 | |
1549 if (@problemCode[$best] =~ m/5/) { | |
1550 print POS "Broken or partial sequence, no 5.8S! "; | |
1551 } else { | |
1552 if (@problemCode[$best] =~ m/[12]/) { | |
1553 print POS "Broken or partial sequence, only partial 5.8S! "; | |
1554 } | |
1555 } | |
1556 if (@problemCode[$best] =~ m/B/) { | |
1557 print POS "ITS region too long! "; | |
1558 } | |
1559 if (@problemCode[$best] =~ m/O/) { | |
1560 print POS "5.8S seem to overlap with SSU! "; | |
1561 } | |
1562 if (@problemCode[$best] =~ m/P/) { | |
1563 print POS "5.8S seem to overlap with LSU! "; | |
1564 } | |
1565 if (@problemCode[$best] =~ m/C/) { | |
1566 print POS "Chimeric! "; | |
1567 } | |
1568 print POS "\n"; | |
1569 | |
1570 } else { # Output only ITS positions | |
1571 $seqPartLen = @dnaEnd[$best] - @dnaStart[$best] + 1; | |
1572 print POS @seqID[$best] . "\t" . $seqDNALength . " bp." . "\t" . "ITS1: " . @its1Start[$best] . "-" . @its1End[$best] . "\t" . "ITS2: " . @its2Start[$best] . "-" . @its2End[$best] . "\n"; # Print the positions of the ITS sequences to the position file | |
1573 } | |
1574 } | |
1575 | |
1576 if (@problem[$best] ne "") { | |
1577 $foundProblem++; | |
1578 print PROBLEM @seqID[$best] . "\t" . @problem[$best] . "\n"; | |
1579 } | |
1580 | |
1581 ## Set extended type string (the string going into the definition line of the FASTA file) | |
1582 $extendedType = $profileIndex{@seqITSType[$best]} . " ITS sequence"; | |
1583 @itsCounts[ord(@seqITSType[$best])]++; # Add one ITS to the appropriate counter | |
1584 | |
1585 if (@seqCompl[$best] == 1) { # If domains were found on complementary strand | |
1586 $extendedStrand = "complementary strand"; # Set the strand string to complementary | |
1587 $itsCompl++; # Add one to the complementary strand counter | |
1588 } else { # If domains were found on the main strand | |
1589 $extendedStrand = "main strand"; # Set the strand string to main | |
1590 $itsMain++; # Add one to the main strand counter | |
1591 } | |
1592 | |
1593 ## Print (extracted) ITS sequence... | |
1594 if ($out_fasta == 1) { # If FASTA-output is on | |
1595 if ($truncate == 0) { # If the whole sequence should be kept in output file | |
1596 if ($chimeric == 0) { # If the sequence is not chimeric | |
1597 if (@problemCode[$best] !~ m/[SL]/) { | |
1598 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1599 print FASTA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1600 } else { | |
1601 print FASTA ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line | |
1602 } | |
1603 print FASTA @seqDNA[$best] . "\n"; # Write DNA sequence | |
1604 } | |
1605 if ($out_partial > 0) { | |
1606 if (@problemCode[$best] !~ m/[SL125]/) { | |
1607 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1608 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1609 } else { | |
1610 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Full ITS region on " . $extendedStrand . "\n"; # Write FASTA defline | |
1611 } | |
1612 print FULLPARTIAL @seqDNA[$best] . "\n"; # Write DNA sequence | |
1613 } else { | |
1614 $its1PartLen = @its1End[$best] - @its1Start[$best] + 1; | |
1615 $its2PartLen = @its2End[$best] - @its2Start[$best] + 1; | |
1616 if (($out_partial < $its1PartLen) && ($out_partial < $its2PartLen)) { | |
1617 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1618 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1619 } else { | |
1620 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Partial ITS region on " . $extendedStrand . "\n"; # Write FASTA defline | |
1621 } | |
1622 print FULLPARTIAL @seqDNA[$best] . "\n"; # Write DNA sequence | |
1623 } | |
1624 } | |
1625 } | |
1626 } else { # If sequence is regarded chimeric | |
1627 $itsChimeric++; # Add one to the chimeric counter | |
1628 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1629 print CHIMERA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1630 } else { | |
1631 print CHIMERA ">" . @seqID[$best] . "|" . @seqITSType[$best] ." Chimeric " . $extendedType . " (" . length(@seqDNA[$best]) . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line | |
1632 } | |
1633 print CHIMERA @seqDNA[$best] . "\n"; # Write DNA sequence | |
1634 $foundChimera++; | |
1635 } | |
1636 } else { # If only the ITS part of the sequence should be saved to output file | |
1637 $fastaStartPoint = @dnaStart[$best] - 1; # Start extraction at the start of the first domain | |
1638 $fastaEndPoint = @dnaEnd[$best]+10; # End extraction 10 bp after the last domain | |
1639 | |
1640 if (@seqDomCounts[$best] > 1) { # If more than one domain was found | |
1641 if (substr(@startDomain[$best],0,5) eq "1_SSU") { # If the first domain was SSU | |
1642 $fastaStartPoint = @ssuEnd[$best]; # Set the start point of the extraction to the end of the SSU domain | |
1643 } | |
1644 if (substr(@startDomain[$best],0,5) eq "4_LSU") { # If the first domain was LSU | |
1645 $fastaStartPoint = @lsuEnd[$best]; # Set the start point of the extraction to the end of the LSU domain | |
1646 } | |
1647 if (substr(@endDomain[$best],0,5) eq "1_SSU") { # If the last domain was SSU | |
1648 $fastaEndPoint = @ssuStart[$best] - 1; # Set the end point of the extraction to the start of the SSU domain | |
1649 } | |
1650 if (substr(@endDomain[$best],0,5) eq "4_LSU") { # If the last domain was LSU | |
1651 $fastaEndPoint = @lsuStart[$best] - 1; # Set the end point of the extraction to the start of the LSU domain | |
1652 } | |
1653 } | |
1654 | |
1655 if ($fastaStartPoint < 0) { # If the start point is smaller than zero, set the start point to zero | |
1656 $fastaStartPoint = 0; | |
1657 } | |
1658 if ($fastaEndPoint > length(@seqDNA[$best])) { # If the end point is larger than the length of the sequence, set the end point to the sequence end | |
1659 $fastaEndPoint = length(@seqDNA[$best]); | |
1660 } | |
1661 | |
1662 $fastaLength = $fastaEndPoint - $fastaStartPoint + 1; | |
1663 | |
1664 if ($chimeric == 0) { # If the sequence is not chimeric | |
1665 if (@problemCode[$best] !~ m/[SL]/) { | |
1666 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1667 print FASTA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1668 } else { | |
1669 print FASTA ">" . @seqID[$best] . "|" . @seqITSType[$best] . " " . $extendedType . " (" . $fastaLength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line | |
1670 } | |
1671 if ($anchorLen > 0) { | |
1672 if ($fastaStartPoint - @allanchorLens[0] > 0) { | |
1673 print FASTA substr(@seqDNA[$best],$fastaStartPoint - @allanchorLens[0],$fastaLength + @allanchorLens[0] + @allanchorLens[3]) . "\n"; # Write DNA sequence | |
1674 } else { | |
1675 print FASTA substr(@seqDNA[$best],0,$fastaLength + $fastaStartPoint + @allanchorLens[3]) . "\n"; # Write DNA sequence | |
1676 } | |
1677 } else { | |
1678 print FASTA substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence | |
1679 } | |
1680 } | |
1681 if ($out_partial > 0) { | |
1682 if (@problemCode[$best] !~ m/[SL125]/) { | |
1683 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1684 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1685 } else { | |
1686 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Full ITS region on " . $extendedStrand . "\n"; # Write FASTA defline | |
1687 } | |
1688 print FULLPARTIAL substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence | |
1689 } else { | |
1690 $its1PartLen = @its1End[$best] - @its1Start[$best] + 1; | |
1691 $its2PartLen = @its2End[$best] - @its2Start[$best] + 1; | |
1692 if (($out_partial < $its1PartLen) && ($out_partial < $its2PartLen)) { | |
1693 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1694 print FULLPARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1695 } else { | |
1696 print FULLPARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] ." " . $extendedType . " (" . $seqDNALength . " bp) Partial ITS region on " . $extendedStrand . "\n"; # Write FASTA defline | |
1697 } | |
1698 print FULLPARTIAL substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence | |
1699 } | |
1700 } | |
1701 } | |
1702 } else { # If sequence is regarded chimeric | |
1703 $itsChimeric++; # Add one to the chimeric counter | |
1704 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1705 print CHIMERA $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1706 } else { | |
1707 print CHIMERA ">" . @seqID[$best] . "|" . @seqITSType[$best] . " Chimeric " . $extendedType . " (" . $fastaLength . " bp) on " . $extendedStrand . "\n"; # Write FASTA definition line | |
1708 } | |
1709 print CHIMERA @seqDNA[$best] . "\n"; # Write DNA sequence | |
1710 $foundChimera++; | |
1711 } | |
1712 } | |
1713 } | |
1714 | |
1715 if ($out_joined == 1) { | |
1716 if ($chimeric == 0) { # If the sequence is not chimeric | |
1717 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1718 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1719 } else { | |
1720 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . " " . $extendedType . " (" . $fastaLength . " bp) From domain " . @startDomain[$best] . " to " . @endDomain[$best] . " on " . $extendedStrand . " Found domains: "; # Write FASTA definition line | |
1721 print JOINED substr(@allSeqDomains[$best],0,length(@allSeqDomains[$best]) - 1) . "\n"; # Write domain order | |
1722 } | |
1723 print JOINED substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence | |
1724 } else { # If sequence is regarded chimeric | |
1725 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1726 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1727 } else { | |
1728 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . " Chimeric " . $extendedType . " (" . $fastaLength . " bp) From domain " . @startDomain[$best] . " to " . @endDomain[$best] . " on " . $extendedStrand . " Found domains: "; # Write FASTA definition line | |
1729 print JOINED substr(@allSeqDomains[$best],0,length(@allSeqDomains[$best]) - 1) . "\n"; # Write domain order | |
1730 } | |
1731 print JOINED substr(@seqDNA[$best],$fastaStartPoint,$fastaLength) . "\n"; # Write DNA sequence | |
1732 } | |
1733 } | |
1734 | |
1735 ## Write SSU sequence to file | |
1736 if ($out_ssu == 1) { # If SSU output is on | |
1737 if (@problemCode[$best] !~ m/S/) { | |
1738 if ($only_full == 0) { | |
1739 $seqPartLen = @ssuEnd[$best] - @ssuStart[$best] + 1; | |
1740 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1741 print SSU $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1742 } else { | |
1743 print SSU ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|SSU " . "Extracted SSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1744 } | |
1745 if (uc($anchor) ne "HMM") { | |
1746 if (@ssuStart[$best] - 1 - $anchorLen > 0) { | |
1747 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1 - $anchorLen, $anchorLen); | |
1748 } else { | |
1749 print SSU substr(@seqDNA[$best], 0, @ssuStart[$best] - 1); | |
1750 } | |
1751 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1); | |
1752 if (@ssuEnd[$best] - @ssuStart[$best] + 1 - $anchorLen > 0) { | |
1753 print SSU substr(@seqDNA[$best], @ssuEnd[$best], $anchorLen); | |
1754 } else { | |
1755 print SSU substr(@seqDNA[$best], @ssuEnd[$best]); | |
1756 } | |
1757 } else { | |
1758 print SSU substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1); | |
1759 } | |
1760 print SSU "\n"; # Write DNA sequence | |
1761 } | |
1762 } | |
1763 } | |
1764 | |
1765 ## Write LSU sequence to file | |
1766 if ($out_lsu == 1) { # If LSU output is on | |
1767 if ($only_full == 0) { | |
1768 if (@problemCode[$best] !~ m/L/) { | |
1769 $seqPartLen = @lsuEnd[$best] - @lsuStart[$best] + 1; | |
1770 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1771 print LSU $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1772 } else { | |
1773 print LSU ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|LSU " . "Extracted LSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1774 } | |
1775 if (uc($anchor) ne "HMM") { | |
1776 if (@lsuStart[$best] - 1 - $anchorLen > 0) { | |
1777 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1 - $anchorLen, $anchorLen); | |
1778 } else { | |
1779 print LSU substr(@seqDNA[$best], 0, @lsuStart[$best] - 1); | |
1780 } | |
1781 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1); | |
1782 #if (@lsuEnd[$best] - @lsuStart[$best] + 1 - $anchorLen > 0) { | |
1783 # print LSU substr(@seqDNA[$best], @lsuEnd[$best] - @lsuStart[$best] + 1, $anchorLen); | |
1784 #} else { | |
1785 # print LSU substr(@seqDNA[$best], @lsuEnd[$best] - @lsuStart[$best] + 1); | |
1786 #} | |
1787 } else { | |
1788 print LSU substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1); | |
1789 } | |
1790 print LSU "\n"; # Write DNA sequence | |
1791 } | |
1792 } | |
1793 } | |
1794 | |
1795 ## Write 5.8S sequence to file | |
1796 if ($out_58S == 1) { # If 5.8S output is on | |
1797 if (@problemCode[$best] !~ m/[125]/) { | |
1798 $seqPartLen = @midEnd[$best] - @midStart[$best] + 1; | |
1799 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1800 print MID $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1801 } else { | |
1802 print MID ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|5.8S " . "Extracted 5.8S sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1803 } | |
1804 if (uc($anchor) ne "HMM") { | |
1805 if (@midStart[$best] - 1 - $anchorLen > 0) { | |
1806 print MID substr(@seqDNA[$best], @midStart[$best] - 1 - $anchorLen, $anchorLen); | |
1807 } else { | |
1808 print MID substr(@seqDNA[$best], 0, @midStart[$best] - 1); | |
1809 } | |
1810 print MID substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1); | |
1811 if (@midEnd[$best] - @midStart[$best] + 1 - $anchorLen > 0) { | |
1812 print MID substr(@seqDNA[$best], @midEnd[$best], $anchorLen); | |
1813 } else { | |
1814 print MID substr(@seqDNA[$best], @midEnd[$best]); | |
1815 } | |
1816 } else { | |
1817 print MID substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1); | |
1818 } | |
1819 print MID "\n"; # Write DNA sequence | |
1820 } | |
1821 } | |
1822 | |
1823 ## Write ITS1 sequence to file | |
1824 if ($out_its1 == 1) { # If ITS1 output is on | |
1825 $seqPartLen = @its1End[$best] - @its1Start[$best] + 1; | |
1826 if ($seqPartLen > 1) { | |
1827 if ( (($only_full == 0) && (@problemCode[$best] !~ m/[15]/)) || (($only_full == 1) && (@problemCode[$best] !~ m/[S15]/))) { | |
1828 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1829 print ITS1 $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1830 } else { | |
1831 print ITS1 ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1832 } | |
1833 if (uc($anchor) ne "HMM") { | |
1834 if (@its1Start[$best] - 1 - $anchorLen > 0) { | |
1835 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen); | |
1836 } else { | |
1837 print ITS1 substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1838 } | |
1839 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1840 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) { | |
1841 print ITS1 substr(@seqDNA[$best], @its1End[$best], $anchorLen); | |
1842 } else { | |
1843 print ITS1 substr(@seqDNA[$best], @its1End[$best]); | |
1844 } | |
1845 } else { | |
1846 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) { | |
1847 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]); | |
1848 } else { | |
1849 print ITS1 substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1850 } | |
1851 print ITS1 substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1852 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) { | |
1853 print ITS1 substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]); | |
1854 } else { | |
1855 print ITS1 substr(@seqDNA[$best], @its1End[$best]); | |
1856 } | |
1857 | |
1858 } | |
1859 print ITS1 "\n"; # Write DNA sequence | |
1860 } | |
1861 } | |
1862 if ($out_partial > 0) { | |
1863 if (@problemCode[$best] !~ m/[S15]/) { | |
1864 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1865 print ITS1PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1866 } else { | |
1867 print ITS1PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted Full ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1868 } | |
1869 if (uc($anchor) ne "HMM") { | |
1870 if (@its1Start[$best] - 1 - $anchorLen > 0) { | |
1871 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen); | |
1872 } else { | |
1873 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1874 } | |
1875 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1876 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) { | |
1877 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], $anchorLen); | |
1878 } else { | |
1879 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]); | |
1880 } | |
1881 } else { | |
1882 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) { | |
1883 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]); | |
1884 } else { | |
1885 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1886 } | |
1887 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1888 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) { | |
1889 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]); | |
1890 } else { | |
1891 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]); | |
1892 } | |
1893 | |
1894 } | |
1895 print ITS1PARTIAL "\n"; # Write DNA sequence | |
1896 } else { | |
1897 if ($out_partial < $seqPartLen) { | |
1898 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1899 print ITS1PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1900 } else { | |
1901 print ITS1PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted Partial ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1902 } | |
1903 if (uc($anchor) ne "HMM") { | |
1904 if (@its1Start[$best] - 1 - $anchorLen > 0) { | |
1905 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - $anchorLen, $anchorLen); | |
1906 } else { | |
1907 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1908 } | |
1909 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1910 if (length(@seqDNA[$best]) - @its1End[$best] - $anchorLen > 0) { | |
1911 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], $anchorLen); | |
1912 } else { | |
1913 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]); | |
1914 } | |
1915 } else { | |
1916 if (@its1Start[$best] - 1 - @allanchorLens[0] > 0) { | |
1917 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1 - @allanchorLens[0], @allanchorLens[0]); | |
1918 } else { | |
1919 print ITS1PARTIAL substr(@seqDNA[$best], 0, @its1Start[$best] - 1); | |
1920 } | |
1921 print ITS1PARTIAL substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); | |
1922 if (length(@seqDNA[$best]) - @its1End[$best] - @allanchorLens[1] > 0) { | |
1923 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best], @allanchorLens[1]); | |
1924 } else { | |
1925 print ITS1PARTIAL substr(@seqDNA[$best], @its1End[$best]); | |
1926 } | |
1927 } | |
1928 print ITS1PARTIAL "\n"; # Write DNA sequence | |
1929 } | |
1930 } | |
1931 } | |
1932 } | |
1933 | |
1934 ## Write ITS2 sequence to file | |
1935 if ($out_its2 == 1) { # If ITS2 output is on | |
1936 $seqPartLen = @its2End[$best] - @its2Start[$best] + 1; | |
1937 if ($seqPartLen > 1) { | |
1938 if ( (($only_full == 0) && (@problemCode[$best] !~ m/[25]/)) || (($only_full == 1) && (@problemCode[$best] !~ m/[L25]/))) { | |
1939 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1940 print ITS2 $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1941 } else { | |
1942 print ITS2 ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1943 } | |
1944 if (uc($anchor) ne "HMM") { | |
1945 if (@its2Start[$best] - 1 - $anchorLen > 0) { | |
1946 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen); | |
1947 } else { | |
1948 print ITS2 substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
1949 } | |
1950 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
1951 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) { | |
1952 print ITS2 substr(@seqDNA[$best], @its2End[$best], $anchorLen); | |
1953 } else { | |
1954 print ITS2 substr(@seqDNA[$best], @its2End[$best]); | |
1955 } | |
1956 } else { | |
1957 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) { | |
1958 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]); | |
1959 } else { | |
1960 print ITS2 substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
1961 } | |
1962 print ITS2 substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
1963 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) { | |
1964 print ITS2 substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]); | |
1965 } else { | |
1966 print ITS2 substr(@seqDNA[$best], @its2End[$best]); | |
1967 } | |
1968 } | |
1969 print ITS2 "\n"; # Write DNA sequence | |
1970 } | |
1971 if ($out_partial > 0) { | |
1972 if (@problemCode[$best] !~ m/[L25]/) { | |
1973 if ($out_preserve == 1) { # If sequence headers should be preserved | |
1974 print ITS2PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
1975 } else { | |
1976 print ITS2PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted Full ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
1977 } | |
1978 if (uc($anchor) ne "HMM") { | |
1979 if (@its2Start[$best] - 1 - $anchorLen > 0) { | |
1980 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen); | |
1981 } else { | |
1982 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
1983 } | |
1984 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
1985 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) { | |
1986 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], $anchorLen); | |
1987 } else { | |
1988 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]); | |
1989 } | |
1990 } else { | |
1991 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) { | |
1992 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]); | |
1993 } else { | |
1994 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
1995 } | |
1996 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
1997 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) { | |
1998 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]); | |
1999 } else { | |
2000 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]); | |
2001 } | |
2002 } | |
2003 print ITS2PARTIAL "\n"; # Write DNA sequence | |
2004 } else { | |
2005 if ($out_partial < $seqPartLen) { | |
2006 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2007 print ITS2PARTIAL $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2008 } else { | |
2009 print ITS2PARTIAL ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted Partial ITS2 sequence " . @its2Start[$best] . "-" . @its2End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2010 } | |
2011 if (uc($anchor) ne "HMM") { | |
2012 if (@its2Start[$best] - 1 - $anchorLen > 0) { | |
2013 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - $anchorLen, $anchorLen); | |
2014 } else { | |
2015 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
2016 } | |
2017 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
2018 if (length(@seqDNA[$best]) - @its2End[$best] - $anchorLen > 0) { | |
2019 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], $anchorLen); | |
2020 } else { | |
2021 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]); | |
2022 } | |
2023 } else { | |
2024 if (@its2Start[$best] - 1 - @allanchorLens[2] > 0) { | |
2025 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1 - @allanchorLens[2], @allanchorLens[2]); | |
2026 } else { | |
2027 print ITS2PARTIAL substr(@seqDNA[$best], 0, @its2Start[$best] - 1); | |
2028 } | |
2029 print ITS2PARTIAL substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); | |
2030 if (length(@seqDNA[$best]) - @its2End[$best] - @allanchorLens[3] > 0) { | |
2031 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best], @allanchorLens[3]); | |
2032 } else { | |
2033 print ITS2PARTIAL substr(@seqDNA[$best], @its2End[$best]); | |
2034 } | |
2035 } | |
2036 print ITS2PARTIAL "\n"; # Write DNA sequence | |
2037 } | |
2038 } | |
2039 } | |
2040 } | |
2041 } | |
2042 | |
2043 ## Output concatenated ITS1 + ITS2 sequences | |
2044 if ($out_concat == 1) { | |
2045 $seqPartLen1 = @its1End[$best] - @its1Start[$best] + 1; | |
2046 $seqPartLen2 = @its2End[$best] - @its2Start[$best] + 1; | |
2047 if (($seqPartLen1 >= $concat_minlen) && ($seqPartLen2 >= $concat_minlen)) { | |
2048 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2049 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2050 } else { | |
2051 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1+2 " . "Concatenated ITS1 and ITS2 sequences (" . ($seqPartLen1 + $seqPartLen2) . " bp)\n"; # Write FASTA definition line | |
2052 } | |
2053 print CONCAT substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); # Write ITS1 DNA sequence | |
2054 print CONCAT "-----"; # Write spacer | |
2055 print CONCAT substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); # Write ITS2 DNA sequence | |
2056 print CONCAT "\n"; # Write newline | |
2057 } else { | |
2058 if ($seqPartLen1 >= $concat_minlen) { | |
2059 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2060 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2061 } else { | |
2062 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "ITS1 sequence (ITS2 too short) (" . $seqPartLen1 . " bp)\n"; # Write FASTA definition line | |
2063 } | |
2064 print CONCAT substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1); # Write ITS1 DNA sequence | |
2065 print CONCAT "-----"; # Write spacer | |
2066 print CONCAT "\n"; # Write newline | |
2067 } | |
2068 if ($seqPartLen2 >= $concat_minlen) { | |
2069 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2070 print CONCAT $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2071 } else { | |
2072 print CONCAT ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "ITS2 sequence (ITS1 too short) (" . $seqPartLen2 . " bp)\n"; # Write FASTA definition line | |
2073 } | |
2074 print CONCAT "-----"; # Write spacer | |
2075 print CONCAT substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1); # Write ITS2 DNA sequence | |
2076 print CONCAT "\n"; # Write newline | |
2077 } | |
2078 } | |
2079 } | |
2080 | |
2081 ## Print all sequences to the joined file for debugging | |
2082 if ($out_joined == 1) { | |
2083 $seqPartLen = @ssuEnd[$best] - @ssuStart[$best] + 1; | |
2084 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2085 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2086 } else { | |
2087 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|SSU " . "Extracted SSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2088 } | |
2089 print JOINED substr(@seqDNA[$best], @ssuStart[$best] - 1, @ssuEnd[$best] - @ssuStart[$best] + 1) . "\n"; # Write DNA sequence | |
2090 | |
2091 $seqPartLen = @its1End[$best] - @its1Start[$best] + 1; | |
2092 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2093 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2094 } else { | |
2095 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS1 " . "Extracted ITS1 sequence " . @its1Start[$best] . "-" . @its1End[$best] . " (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2096 } | |
2097 print JOINED substr(@seqDNA[$best], @its1Start[$best] - 1, @its1End[$best] - @its1Start[$best] + 1) . "\n"; # Write DNA sequence | |
2098 | |
2099 $seqPartLen = @midEnd[$best] - @midStart[$best] + 1; | |
2100 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2101 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2102 } else { | |
2103 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|5.8S " . "Extracted 5.8S sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2104 } | |
2105 print JOINED substr(@seqDNA[$best], @midStart[$best] - 1, @midEnd[$best] - @midStart[$best] + 1) . "\n"; # Write DNA sequence | |
2106 | |
2107 $seqPartLen = @its2End[$best] - @its2Start[$best] + 1; | |
2108 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2109 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2110 } else { | |
2111 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|ITS2 " . "Extracted ITS2 sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2112 } | |
2113 print JOINED substr(@seqDNA[$best], @its2Start[$best] - 1, @its2End[$best] - @its2Start[$best] + 1) . "\n"; # Write DNA sequence | |
2114 | |
2115 $seqPartLen = @lsuEnd[$best] - @lsuStart[$best] + 1; | |
2116 if ($out_preserve == 1) { # If sequence headers should be preserved | |
2117 print JOINED $headers{@seqID[$best]} . "\n"; # Write FASTA definition line | |
2118 } else { | |
2119 print JOINED ">" . @seqID[$best] . "|" . @seqITSType[$best] . "|LSU " . "Extracted LSU sequence (" . $seqPartLen . " bp)\n"; # Write FASTA definition line | |
2120 } | |
2121 print JOINED substr(@seqDNA[$best], @lsuStart[$best] - 1, @lsuEnd[$best] - @lsuStart[$best] + 1) . "\n"; # Write DNA sequence | |
2122 } | |
2123 | |
2124 | |
2125 if ($out_results == 1) { | |
2126 ## Print info on all matches, also not top ones to the results file... | |
2127 for ($i = 0; $i < scalar(@seqITSType); $i++) { # Go through all the possible ITS types... | |
2128 print RESULTS @seqITSType[$i] . ": " . @seqDomCounts[$i] . " " . @seqAvgE[$i] . " " . @seqAvgScore[$i]; # Write some info on this type (Type, Domain count, Average E-value, Average score) | |
2129 if ($i < scalar(@seqITSType) - 1) { # If this is no the last domain type | |
2130 print RESULTS ", "; # Write a comma | |
2131 } | |
2132 } | |
2133 print RESULTS "\n"; # Write end of line | |
2134 } | |
2135 } | |
2136 | |
2137 ## Undefine all used arrays for the next round... | |
2138 undef @seqID; | |
2139 undef @seqITSType; | |
2140 undef @seqCompl; | |
2141 undef @seqDomCounts; | |
2142 undef @seqAvgE; | |
2143 undef @seqAvgScore; | |
2144 undef @seqScoreSum; | |
2145 undef @seqDNA; | |
2146 undef @allSeqDomains; | |
2147 undef @dnaStart; | |
2148 undef @dnaEnd; | |
2149 undef @ssuStart; | |
2150 undef @ssuEnd; | |
2151 undef @lsuStart; | |
2152 undef @lsuEnd; | |
2153 undef @midStart; | |
2154 undef @midEnd; | |
2155 undef @its1Start; | |
2156 undef @its1End; | |
2157 undef @its2Start; | |
2158 undef @its2End; | |
2159 undef @startDomain; | |
2160 undef @endDomain; | |
2161 undef @domain_order; | |
2162 undef @sorted_domain_order; | |
2163 undef @problem; | |
2164 undef @problemCode; | |
2165 undef @anchorLens; | |
2166 } | |
2167 if (@item[0] ne "") { # Add this entry to the set (regardless if the entry has the same ID as entries already in the set), as long as it is non-empty | |
2168 push(@seqID, @item[0]); # Add sequence ID | |
2169 push(@seqITSType, @item[1]); # Add ITS type | |
2170 push(@seqCompl, @item[2]); # Add main/complementary strand info | |
2171 push(@seqDomCounts, @item[3]); # Add domain count | |
2172 push(@seqAvgE, @item[4]); # Add average E-value | |
2173 push(@seqAvgScore, @item[5]); # Add average score | |
2174 push(@seqScoreSum, @item[6]); # Add sum-of-scores | |
2175 push(@seqDNA, @item[7]); # Add DNA sequence | |
2176 | |
2177 ## Determine first and last domains, and their positions | |
2178 ## Set variables to unrealistic values | |
2179 $dnaEnd = length(@item[7]); | |
2180 $startDomain = "***"; | |
2181 $endDomain = "***"; | |
2182 $dnaStart = 1; | |
2183 $allDomains = ""; | |
2184 $ssuStart = 1; | |
2185 $ssuEnd = 0; | |
2186 $midStart = 1; | |
2187 $midEnd = 0; | |
2188 $lsuStart = 1; | |
2189 $lsuEnd = 0; | |
2190 $its1Start = 1; | |
2191 $its1End = length(@item[7]); | |
2192 $its2Start = 1; | |
2193 $its2End = length(@item[7]); | |
2194 $problem = ""; | |
2195 $problemCode = ""; | |
2196 | |
2197 $ssuFound = 0; | |
2198 $lsuFound = 0; | |
2199 $midSFound = 0; | |
2200 $midEFound = 0; | |
2201 $order = ""; | |
2202 undef @hitanchorlens; | |
2203 | |
2204 for ($i = 8; $i < scalar(@item); $i++) { # Go through the list of found domains in this sequence | |
2205 ($hitStart,$hitEnd,$hitProfile,$hitScore,$hitEval,$hitanchorlen) = split(';',@item[$i]); # Separate the hit stats into variables | |
2206 $allDomains = $allDomains . $hitProfile . " "; # Add found domain to the list of all domains | |
2207 | |
2208 # if ($hitStart < $dnaStart) { # If this domain is the first one so far | |
2209 # $dnaStart = $hitStart; # Set the start of the ITS sequence to this domain's start | |
2210 # $startDomain = $hitProfile; # Set this domain as the starting domain | |
2211 # } | |
2212 # if ($hitEnd > $dnaEnd) { # If this domain is the last one so far | |
2213 # $dnaEnd = $hitEnd; # Set the end of the ITS sequence to this domain's end | |
2214 # $endDomain = $hitProfile; # Set this domain as the ending domain | |
2215 # } | |
2216 | |
2217 if (substr($hitProfile,0,5) eq "1_SSU" ) { # If this domain is the SSU's end | |
2218 $dnaStart = $hitStart; # Set the start of the ITS sequence to this domain's start | |
2219 $startDomain = $hitProfile; # Set this domain as the starting domain | |
2220 $ssuStart = 1; # Set the start of the SSU sequence to the start of the sequence | |
2221 $ssuEnd = $hitEnd; # Set the end of the SSU sequence to this domain's end | |
2222 $its1Start = $hitEnd + 1; # Set the start of the ITS1 sequence to right after this domain's end | |
2223 if ($midEFound == 0) { | |
2224 $its2Start = $hitEnd + 1; # Set the end of the ITS2 sequence to right after this domain's end | |
2225 } | |
2226 $ssuFound = 1; | |
2227 $order = $order . "1"; | |
2228 @hitanchorlens[1] = $hitanchorlen; | |
2229 } | |
2230 | |
2231 if (substr($hitProfile,0,5) eq "2_5.8" ) { # If this domain is the 5.8S's start | |
2232 if ($startDomain eq "***") { | |
2233 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence | |
2234 $startDomain = $hitProfile; # Set this domain as the starting domain | |
2235 } | |
2236 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start | |
2237 if ($midEFound == 0) { | |
2238 $its2Start = $hitEnd + 1; # Set the start of the ITS2 sequence to right after this domain's end | |
2239 } | |
2240 $midStart = $hitStart; # Set the start of the 5.8S sequence to this domain's start | |
2241 $midSFound = 1; | |
2242 $order = $order . "2"; | |
2243 @hitanchorlens[2] = $hitanchorlen; | |
2244 } | |
2245 | |
2246 if (substr($hitProfile,0,5) eq "3_End" ) { # If this domain is the 5.8S's end | |
2247 if ($startDomain eq "***") { | |
2248 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence | |
2249 $startDomain = $hitProfile; # Set this domain as the starting domain | |
2250 } | |
2251 if ($midSFound == 0) { | |
2252 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start | |
2253 } | |
2254 $its2Start = $hitEnd + 1; # Set the end of the ITS2 sequence to right after this domain's end | |
2255 $midEnd = $hitEnd; # Set the end of the 5.8S sequence to this domain's end | |
2256 $midEFound = 1; | |
2257 $order = $order . "3"; | |
2258 @hitanchorlens[3] = $hitanchorlen; | |
2259 } | |
2260 | |
2261 if (substr($hitProfile,0,5) eq "4_LSU" ) { # If this domain is the LSU's start | |
2262 if ($startDomain eq "***") { | |
2263 $dnaStart = 1; # Set the start of the ITS sequence to the start of the sequence | |
2264 $startDomain = $hitProfile; # Set this domain as the starting domain | |
2265 } | |
2266 $dnaEnd = $hitEnd; # Set the end of the ITS sequence to this domain's end | |
2267 $endDomain = $hitProfile; # Set this domain as the ending domain | |
2268 $lsuStart = $hitStart; # Set the start of the LSU sequence to the start of the this domain | |
2269 $lsuEnd = length(@item[7]); # Set the end of the LSU sequence to the end of the sequence | |
2270 $its2End = $hitStart - 1; # Set the end of the ITS2 sequence to right before this domain's start | |
2271 if ($midSFound == 0) { | |
2272 $its1End = $hitStart - 1; # Set the end of the ITS1 sequence to right before this domain's start | |
2273 } | |
2274 $lsuFound = 1; | |
2275 $order = $order . "4"; | |
2276 @hitanchorlens[4] = $hitanchorlen; | |
2277 } | |
2278 } | |
2279 | |
2280 if ($ssuFound == 0) { | |
2281 if ($problem ne "") { | |
2282 $problem = $problem . "; "; | |
2283 } | |
2284 $problem = $problem . "End of SSU sequence not found"; | |
2285 $problemCode = $problemCode . "S"; | |
2286 $order = "1" . $order; | |
2287 } | |
2288 | |
2289 if ($lsuFound == 0) { | |
2290 if ($problem ne "") { | |
2291 $problem = $problem . "; "; | |
2292 } | |
2293 $problem = $problem . "Start of LSU sequence not found"; | |
2294 $problemCode = $problemCode . "L"; | |
2295 $order = $order . "4"; | |
2296 } | |
2297 | |
2298 if (($midSFound == 0) && ($midEFound == 0)) { | |
2299 if ($problem ne "") { | |
2300 $problem = $problem . "; "; | |
2301 } | |
2302 $problem = $problem . "The 5.8S sequence was not found at all"; | |
2303 $problemCode = $problemCode . "5"; | |
2304 } else { | |
2305 if ($midSFound == 0) { | |
2306 if ($problem ne "") { | |
2307 $problem = $problem . "; "; | |
2308 } | |
2309 $problem = $problem . "Start of 5.8S sequence not found"; | |
2310 $problemCode = $problemCode . "1"; | |
2311 } | |
2312 if ($midEFound == 0) { | |
2313 if ($problem ne "") { | |
2314 $problem = $problem . "; "; | |
2315 } | |
2316 $problem = $problem . "End of 5.8S sequence not found"; | |
2317 $problemCode = $problemCode . "2"; | |
2318 } | |
2319 } | |
2320 | |
2321 if ($dnaEnd - $dnaStart > 1500) { | |
2322 if ($problem ne "") { | |
2323 $problem = $problem . "; "; | |
2324 } | |
2325 $problem = $problem . "ITS region is suspiciously long (> 1500 bp)"; | |
2326 $problemCode = $problemCode . "B"; | |
2327 } | |
2328 | |
2329 if (length($order) == 4) { | |
2330 if ($order ne "1234") { | |
2331 if ($problem ne "") { | |
2332 $problem = $problem . "; "; | |
2333 } | |
2334 $problem = $problem . "Domains found in wrong order, sequence may be chimeric"; | |
2335 $problemCode = $problemCode . "C"; | |
2336 } | |
2337 } else { | |
2338 if ((substr($order,0,1) ne "1") || (substr($order,-1) ne "4")) { | |
2339 if ($problem ne "") { | |
2340 $problem = $problem . "; "; | |
2341 } | |
2342 $problem = $problem . "Domains found in wrong order, sequence may be chimeric"; | |
2343 $problemCode = $problemCode . "C"; | |
2344 } else { | |
2345 if (($midSFound == 1) && ($midEFound == 1)) { | |
2346 if ($order !~ m/23/) { | |
2347 if ($problem ne "") { | |
2348 $problem = $problem . "; "; | |
2349 } | |
2350 $problem = $problem . "Domains found in wrong order, sequence may be chimeric"; | |
2351 $problemCode = $problemCode . "C"; | |
2352 } | |
2353 } | |
2354 } | |
2355 } | |
2356 | |
2357 if ($its1End - $its1Start < 0) { # 5.8S overlaps SSU | |
2358 if (($midSFound == 1) && ($ssuFound == 1)) { | |
2359 $problemCode = $problemCode . "OC"; | |
2360 $its1Start = 0; | |
2361 $its1End = 0; | |
2362 if ($problem ne "") { | |
2363 $problem = $problem . "; "; | |
2364 } | |
2365 $problem = $problem . "SSU seems to overlap 5.8S, sequence may be chimeric"; | |
2366 } else { | |
2367 $problemCode = $problemCode . "X"; | |
2368 $its1Start = 0; | |
2369 $its1End = 0; | |
2370 if ($problem ne "") { | |
2371 $problem = $problem . "; "; | |
2372 } | |
2373 $problem = $problem . "No ITS1 sequence"; | |
2374 } | |
2375 } | |
2376 if ($its2End - $its2Start < 0) { # 5.8S overlaps LSU | |
2377 if (($midEFound == 1) && ($lsuFound == 1)) { | |
2378 $problemCode = $problemCode . "PC"; | |
2379 $its2Start = 0; | |
2380 $its2End = 0; | |
2381 if ($problem ne "") { | |
2382 $problem = $problem . "; "; | |
2383 } | |
2384 $problem = $problem . "LSU seems to overlap 5.8S, sequence may be chimeric"; | |
2385 } else { | |
2386 $problemCode = $problemCode . "Y"; | |
2387 $its2Start = 0; | |
2388 $its2End = 0; | |
2389 if ($problem ne "") { | |
2390 $problem = $problem . "; "; | |
2391 } | |
2392 $problem = $problem . "No ITS2 sequence"; | |
2393 } | |
2394 } | |
2395 | |
2396 | |
2397 if (($problemCode =~ m/[15]/) && ($problemCode =~ m/[S]/)) { # Sequence lack all indications of ITS1 | |
2398 $its1Start = 0; | |
2399 $its1End = 0; | |
2400 } | |
2401 if (($problemCode =~ m/[25]/) && ($problemCode =~ m/[L]/)) { # Sequence lack all indications of ITS2 | |
2402 $its2Start = 0; | |
2403 $its2End = 0; | |
2404 } | |
2405 | |
2406 | |
2407 $allhitanchorlens = @hitanchorlens[1] . "," . @hitanchorlens[2] . "," . @hitanchorlens[3] . "," . @hitanchorlens[4]; | |
2408 | |
2409 push(@allSeqDomains,$allDomains); # Add list of all domains | |
2410 push(@dnaStart, $dnaStart); # Add start of the ITS sequence | |
2411 push(@startDomain, $startDomain); # Add start domain | |
2412 push(@dnaEnd, $dnaEnd); # Add end of ITS sequence | |
2413 push(@endDomain, $endDomain); # Add end domain | |
2414 push(@ssuStart, $ssuStart); # Add start of the SSU sequence | |
2415 push(@ssuEnd, $ssuEnd); # Add end of the SSU sequence | |
2416 push(@midStart, $midStart); # Add start of the 5.8S sequence | |
2417 push(@midEnd, $midEnd); # Add end of the 5.8S sequence | |
2418 push(@lsuStart, $lsuStart); # Add start of the LSU sequence | |
2419 push(@lsuEnd, $lsuEnd); # Add end of the LSU sequence | |
2420 push(@its1Start, $its1Start); # Add start of the ITS1 sequence | |
2421 push(@its1End, $its1End); # Add end of the ITS1 sequence | |
2422 push(@its2Start, $its2Start); # Add start of the ITS2 sequence | |
2423 push(@its2End, $its2End); # Add end of the ITS2 sequence | |
2424 push(@problem, $problem); # Add potential problem info | |
2425 push(@problemCode, $problemCode); # Add potential problem info in code form | |
2426 push(@anchorLens, $allhitanchorlens); # Add the anchor lengths | |
2427 } | |
2428 $lc++; # Increase the line count by one | |
2429 } | |
2430 | |
2431 ## Save results to the summary file | |
2432 if ($out_sum == 1) { # If summary file should be written | |
2433 $itsTotal = 0; # Reset the total ITS sum | |
2434 foreach $typeCount (@itsCounts) { # Add ITSs from all different origins | |
2435 $itsTotal += $typeCount; # Add the number of ITSs for this origin | |
2436 } | |
2437 ## Write info on the found ITS sequences to the summary file | |
2438 print SUMMARY "Sequences detected as ITS by ITSx:\t$itsTotal\n"; | |
2439 print SUMMARY " On main strand: \t$itsMain\n"; | |
2440 print SUMMARY " On complementary strand:\t$itsCompl\n"; | |
2441 if ($allow_reorder == 0) { # If re-ordering of domains is not allowed | |
2442 print SUMMARY "Sequences detected as chimeric by ITSx:\t$itsChimeric\n"; # Write the number of reported chimeric sequences to the summary file | |
2443 } | |
2444 ## Write info on the found ITS sequence types to the summary file | |
2445 print SUMMARY "ITS sequences by preliminary origin:\n"; | |
2446 print SUMMARY " Alveolates: \t" . int(@itsCounts[ord("A")]) . "\n"; | |
2447 print SUMMARY " Amoebozoa: \t" . int(@itsCounts[ord("D")]) . "\n"; | |
2448 print SUMMARY " Bacillariophyta: \t" . int(@itsCounts[ord("C")]) . "\n"; | |
2449 print SUMMARY " Brown algae: \t" . int(@itsCounts[ord("I")]) . "\n"; | |
2450 print SUMMARY " Bryophytes: \t" . int(@itsCounts[ord("B")]) . "\n"; | |
2451 print SUMMARY " Euglenozoa: \t" . int(@itsCounts[ord("E")]) . "\n"; | |
2452 print SUMMARY " Eustigmatophytes:\t" . int(@itsCounts[ord("U")]) . "\n"; | |
2453 print SUMMARY " Fungi: \t" . int(@itsCounts[ord("F")]) . "\n"; | |
2454 print SUMMARY " Green algae: \t" . int(@itsCounts[ord("G")]) . "\n"; | |
2455 print SUMMARY " Liverworts: \t" . int(@itsCounts[ord("L")]) . "\n"; | |
2456 print SUMMARY " Metazoa: \t" . int(@itsCounts[ord("M")]) . "\n"; | |
2457 print SUMMARY " Microsporidia: \t" . int(@itsCounts[ord("N")]) . "\n"; | |
2458 print SUMMARY " Oomycetes: \t" . int(@itsCounts[ord("O")]) . "\n"; | |
2459 print SUMMARY " Prymnesiophytes: \t" . int(@itsCounts[ord("P")]) . "\n"; | |
2460 print SUMMARY " Raphidophytes: \t" . int(@itsCounts[ord("Q")]) . "\n"; | |
2461 print SUMMARY " Red algae: \t" . int(@itsCounts[ord("H")]) . "\n"; | |
2462 print SUMMARY " Rhizaria: \t" . int(@itsCounts[ord("R")]) . "\n"; | |
2463 print SUMMARY " Synurophyceae: \t" . int(@itsCounts[ord("S")]) . "\n"; | |
2464 print SUMMARY " Tracheophyta: \t" . int(@itsCounts[ord("T")]) . "\n"; | |
2465 print SUMMARY "-----------------------------------------------------------------\n"; | |
2466 close (SUMMARY); # Close the summary file | |
2467 } | |
2468 | |
2469 if ($out_results == 1) { | |
2470 close (RESULTS); # Close the results file | |
2471 } | |
2472 close (RAWOUT); # Close the raw output file | |
2473 close (PROBLEM); # Close the file for problematic entries | |
2474 if ($foundProblem == 0) { | |
2475 `rm $output.problematic.txt 2> /dev/null`; | |
2476 } | |
2477 if ($out_pos == 1) { | |
2478 close (POS); # Close the positions file | |
2479 } | |
2480 if ($out_fasta == 1) { # If FASTA output is on | |
2481 close (FASTA); # Close the FASTA output file | |
2482 if ($allow_reorder == 0) { # If re-ordering of domains is not allowed | |
2483 close (CHIMERA); # Close the chimera file | |
2484 if ($foundChimera == 0) { | |
2485 `rm $output.chimeric.fasta 2> /dev/null`; | |
2486 } | |
2487 } | |
2488 if ($out_partial > 0) { | |
2489 close FULLPARTIAL; | |
2490 } | |
2491 } | |
2492 if ($out_ssu == 1) { | |
2493 close (SSU); # Close the SSU file | |
2494 } | |
2495 if ($out_lsu == 1) { | |
2496 close (LSU); # Close the LSU file | |
2497 } | |
2498 if ($out_58S == 1) { | |
2499 close (MID); # Close the 58S file | |
2500 } | |
2501 if ($out_its1 == 1) { | |
2502 close (ITS1); # Close the ITS1 file | |
2503 if ($out_partial > 0) { | |
2504 close ITS1PARTIAL; | |
2505 } | |
2506 } | |
2507 if ($out_its2 == 1) { | |
2508 close (ITS2); # Close the ITS2 file | |
2509 if ($out_partial > 0) { | |
2510 close ITS2PARTIAL; | |
2511 } | |
2512 } | |
2513 if ($out_concat == 1) { | |
2514 close CONCAT; | |
2515 } | |
2516 | |
2517 if ($out_not == 1) { # If not-found output is on | |
2518 open (NOTFOUND, "$output\_no_detections.txt"); # Open the not-found output file | |
2519 while ($line = <NOTFOUND>) { # Read all entries from file | |
2520 chomp($line); # Remove newline char | |
2521 push(@nodetectionlist,$line); # Add to non-detection list | |
2522 } | |
2523 close NOTFOUND; | |
2524 | |
2525 open (NOTFOUND, ">$output\_no_detections.fasta"); # Create a not-found FASTA output file | |
2526 foreach $seqID (@nodetectionlist) { # For all non-detections | |
2527 $seq = $sequenceDB{"$seqID"}; # Get sequence from sequence database | |
2528 print NOTFOUND ">$seqID\n"; # Print not found sequence ID | |
2529 print NOTFOUND $seq . "\n"; # Print not found sequence | |
2530 } | |
2531 close NOTFOUND; | |
2532 } | |
2533 | |
2534 ## Clean up and finish | |
2535 | |
2536 if ($pipeline == 0) { # If ITSx is not called from the pipeline mode (i.e. from ITSx) | |
2537 if ($save_raw == 1) { # If raw data should be saved | |
2538 `mv $tempDir $output\_ITSx_raw_output`; # Change the name of the temporary directory to ..._ITSx_raw_output | |
2539 } else { # Else, discard the raw data | |
2540 `rm -rf $tempDir`; # Remove the temporary directory | |
2541 } | |
2542 } | |
2543 | |
2544 ## Get the current time and output a finished message | |
2545 $now = localtime; | |
2546 if ($silent == 0) { | |
2547 print STDERR "$now : Extraction finished!\n"; | |
2548 print STDERR "-----------------------------------------------------------------\n"; | |
2549 print STDERR "Thank you for using ITSx!\n"; | |
2550 print STDERR "Please report bugs or unsupported lineages to itsx\@microbiology.se\n"; | |
2551 print STDERR "\n"; | |
2552 } | |
2553 | |
2554 ## Write end time a summary file | |
2555 if ($pipeline == 0) { # If not running in pipeline mode | |
2556 if ($out_sum == 1) { # If summary output is on | |
2557 open (SUMMARY, ">>$output.summary.txt"); # Append to the summary file | |
2558 print SUMMARY "ITSx run finished at $now.\n"; # Write ending time for the analysis | |
2559 close (SUMMARY); # Close summary file | |
2560 } | |
2561 } | |
2562 | |
2563 sub hmmerSearch { | |
2564 $hmmerCommand = $_[0]; | |
2565 $outputFile = $_[1]; | |
2566 $strand = $_[2]; | |
2567 $profileSet = $_[3]; | |
2568 open (HMMEROUTPUT, ">$outputFile"); | |
2569 open (HMMER, "$hmmerCommand |"); | |
2570 $totalHitCount = 0; | |
2571 $hitCount = 0; | |
2572 $SSUCount = 0; | |
2573 $LSUCount = 0; | |
2574 $startCount = 0; | |
2575 $endCount = 0; | |
2576 $maxCount = 1; | |
2577 while (chomp($line = <HMMER>)) { | |
2578 if (substr($line,0,6) eq "Query:") { | |
2579 $hitCount = 0; | |
2580 $SSUCount = 0; | |
2581 $LSUCount = 0; | |
2582 $startCount = 0; | |
2583 $endCount = 0; | |
2584 undef @bestScore; | |
2585 undef @bestEntry; | |
2586 | |
2587 $query = substr($line,7); | |
2588 $queryLength = $query; | |
2589 $queryLength =~ s/.* *//; | |
2590 $queryLength =~ s/[^0-9]//g; | |
2591 $query =~ s/ *//; | |
2592 $query =~ s/ *.*//; | |
2593 | |
2594 print HMMEROUTPUT "## New query:\t$query\t$queryLength\n"; | |
2595 | |
2596 } | |
2597 if (substr($line,0,12) eq "Description:") { | |
2598 $desc = $line; | |
2599 } | |
2600 if (substr($line,0,3) eq ">> ") { | |
2601 ($tempshit,$hmmerSubjectName) = split(' ',$line); | |
2602 } | |
2603 if ($line =~ m/[0-9] ! /) { | |
2604 $stats = $line; | |
2605 $stats =~ s/ */\t/g; | |
2606 ($empty,$no,$excl,$score) = split('\t',$stats); | |
2607 $hitCount++; | |
2608 $totalHitCount++; | |
2609 if ($maxCount == 0) { | |
2610 print HMMEROUTPUT "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2611 } else { | |
2612 if (substr($hmmerSubjectName,0,5) eq "1_SSU") { | |
2613 $SSUCount++; | |
2614 if ($SSUCount <= $maxCount) { | |
2615 @bestScore[1] = $score; | |
2616 @bestEntry[1] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2617 } else { | |
2618 if ($score > @bestScore[1]) { | |
2619 @bestScore[1] = $score; | |
2620 @bestEntry[1] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2621 } | |
2622 } | |
2623 } | |
2624 if (substr($hmmerSubjectName,0,5) eq "4_LSU") { | |
2625 $LSUCount++; | |
2626 if ($LSUCount <= $maxCount) { | |
2627 @bestScore[4] = $score; | |
2628 @bestEntry[4] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2629 } else { | |
2630 if ($score > @bestScore[4]) { | |
2631 @bestScore[4] = $score; | |
2632 @bestEntry[4] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2633 } | |
2634 } | |
2635 } | |
2636 if (substr($hmmerSubjectName,0,5) eq "2_5.8") { | |
2637 $startCount++; | |
2638 if ($startCount <= $maxCount) { | |
2639 @bestScore[2] = $score; | |
2640 @bestEntry[2] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2641 } else { | |
2642 if ($score > @bestScore[2]) { | |
2643 @bestScore[2] = $score; | |
2644 @bestEntry[2] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2645 } | |
2646 } | |
2647 } | |
2648 if (substr($hmmerSubjectName,0,5) eq "3_End") { | |
2649 $endCount++; | |
2650 if ($endCount <= $maxCount) { | |
2651 @bestScore[3] = $score; | |
2652 @bestEntry[3] = "$query\t$hmmerSubjectName\t$queryLength$stats\n"; | |
2653 } else { | |
2654 if ($score > @bestScore[3]) { | |
2655 @bestScore[3] = $score; | |
2656 @bestEntry[3] = "$query\t$hmmerSubjectName\t$queryLength$stats\n" | |
2657 } | |
2658 } | |
2659 } | |
2660 } | |
2661 } | |
2662 if (substr($line,0,2) eq "//") { | |
2663 if ($maxCount > 0) { | |
2664 if ($SSUCount > 0) { | |
2665 print HMMEROUTPUT @bestEntry[1]; | |
2666 } | |
2667 if ($startCount > 0) { | |
2668 print HMMEROUTPUT @bestEntry[2]; | |
2669 } | |
2670 if ($endCount > 0) { | |
2671 print HMMEROUTPUT @bestEntry[3]; | |
2672 } | |
2673 if ($LSUCount > 0) { | |
2674 print HMMEROUTPUT @bestEntry[4]; | |
2675 } | |
2676 } | |
2677 print HMMEROUTPUT "//\n"; | |
2678 } | |
2679 } | |
2680 close(HMMEROUTPUT); | |
2681 $now = localtime; | |
2682 if ($silent == 0) { | |
2683 if ($strand eq "M") { | |
2684 print STDERR " $now : " . ucfirst($profileIndex{$profileSet}) . " analysis of main strand finished.\n"; # Print finished type | |
2685 } else { | |
2686 print STDERR " $now : " . ucfirst($profileIndex{$profileSet}) . " analysis of complementary strand finished.\n"; # Print finished type | |
2687 } | |
2688 } | |
2689 } | |
2690 | |
2691 | |
2692 ## Please send beers, pizzas, cakes, fruit pies, job positions and other types of feedback to: | |
2693 ## johan.bengtsson [at] microbiology.se | |
2694 ## Looking forward to hearing from you.... visit my website: www.microbiology.se for info on my research | |
2695 ## //Johan Bengtsson, 2012-2014 |