Mercurial > repos > onnodg > blast_annotations_processor
view blast_annotations_processor.xml @ 0:a3989edf0a4a draft
planemo upload for repository https://github.com/Onnodg/Naturalis_NLOOR/tree/main/NLOOR_scripts/process_annotations_tool commit c944fd5685f295acba06679e85b67973c173b137
| author | onnodg |
|---|---|
| date | Tue, 14 Oct 2025 09:08:30 +0000 |
| parents | |
| children | 2acf82433aa4 |
line wrap: on
line source
<tool id="blast_annotation_processor" name="BLAST Annotation Processor" version="1.0.0"> <description>Process BLAST annotation results with taxonomic analysis</description> <requirements> <requirement type="package" version="3.12.3">python</requirement> <requirement type="package" version="3.10.6">matplotlib</requirement> <requirement type="package" version="2.3.2">pandas</requirement> <requirement type="package" version="2.3.2">numpy</requirement> <requirement type="package" version="3.1.5">openpyxl</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ python '$__tool_directory__/blast_annotations_processor.py' --input-anno '$input_anno' --input-unanno '$input_unanno' #if $outputs and 'eval_plot' in $outputs --eval-plot '$eval_plot' #end if #if $outputs and 'taxa_output' in $outputs --taxa-output '$taxa_output' #end if #if $outputs and 'circle_data' in $outputs --circle-data '$circle_data' #end if #if $outputs and 'header_anno' in $outputs --header-anno '$header_anno' #end if #if $outputs and 'anno_stats' in $outputs --anno-stats '$anno_stats' #end if --uncertain-threshold $advanced.uncertain_threshold --eval-threshold $advanced.eval_threshold #if $advanced.use_counts --use-counts #end if ]]></command> <inputs> <!-- Required Input Files --> <param name="input_anno" type="data" format="tabular" label="Annotated BLAST output file" help="Tabular BLAST output with taxonomic annotations"/> <param name="input_unanno" type="data" format="fasta" label="Original unannotated sequences" help="FASTA file with original sequences before BLAST annotation"/> <!-- Output Selection --> <param name="outputs" type="select" multiple="true" display="checkboxes" label="Select outputs to generate" help="Choose which analysis outputs to create"> <option value="eval_plot">E-value distribution plot</option> <option value="taxa_output">Taxonomic report (Kraken2-like format)</option> <option value="circle_data">Circular taxonomic datafile</option> <option value="header_anno">Header annotations table</option> <option value="anno_stats">Annotation statistics</option> </param> <!-- Processing Parameters --> <section name="advanced" title="Advanced Parameters" expanded="false"> <param name="uncertain_threshold" type="float" value="0.9" min="0.0" max="1.0" label="Uncertain threshold" help="Threshold for resolving taxonomic conflicts (0.0-1.0). If one taxon represents more than this fraction of reads, it will be used instead of 'Uncertain taxa'"/> <param name="eval_threshold" type="float" value="1e-10" min="0" label="E-value threshold" help="Maximum E-value to consider for annotations. Results with higher E-values will be filtered out"/> <param name="use_counts" type="boolean" checked="true" label="Use read counts in circular diagrams" help="If checked, circular diagrams will reflect read abundance. If unchecked, only unique taxa are counted"/> </section> </inputs> <outputs> <!-- E-value Plot --> <data name="eval_plot" format="png" label="E-value distribution plot on ${on_string}"> <filter>outputs and 'eval_plot' in outputs</filter> </data> <!-- Taxa Output Report --> <data name="taxa_output" format="txt" label="Taxonomic report on ${on_string}"> <filter>outputs and 'taxa_output' in outputs</filter> </data> <!-- Circular Taxonomy Diagram --> <data name="circle_data" format="txt" label="Circular taxonomic data on ${on_string}"> <filter>outputs and 'circle_data' in outputs</filter> </data> <!-- Header Annotations --> <data name="header_anno" format="xlsx" label="Header annotations on ${on_string}"> <filter>outputs and 'header_anno' in outputs</filter> </data> <!-- Annotation Statistics --> <data name="anno_stats" format="txt" label="Annotation statistics on ${on_string}"> <filter>outputs and 'anno_stats' in outputs</filter> </data> </outputs> <tests> <test expect_num_outputs="5"> <param name="input_anno" value="input_test_curated_labels.tabular"/> <param name="input_unanno" value="input_test_curated.fasta"/> <param name="outputs" value="eval_plot,taxa_output,circle_data,header_anno,anno_stats"/> <output name="taxa_output" file="output_taxa_output.txt"/> <output name="eval_plot" file="output_eval.png" compare="sim_size"/> <output name="header_anno" file="header_anno_excel.xlsx" decompress="true"/> <output name="anno_stats" file="output_anno_out.txt"/> <output name="circle_data" file="output_circle_data.txt"/> <section name="advanced"> <param name="uncertain_threshold" value="0.9"/> <param name="eval_threshold" value="1e-10"/> <param name="use_counts" value="True"/> </section> </test> <test expect_num_outputs="5"> <param name="input_anno" value="galaxy_input_genbank.fa.tabular"/> <param name="input_unanno" value="galaxy_input_pre.fasta"/> <param name="outputs" value="eval_plot,taxa_output,circle_data,header_anno,anno_stats"/> <output name="taxa_output" file="output_genbank_taxa_output.txt"/> <output name="eval_plot" file="output_genbank_eval.png" compare="sim_size"/> <output name="header_anno" file="output_genbank_header_anno.xlsx" decompress="true"/> <output name="anno_stats" file="output_genbank_anno_out.txt"/> <output name="circle_data" file="output_genbank_circle_data.txt"/> </test> <test expect_num_outputs="3"> <param name="input_anno" value="galaxy_input_genbank.fa.tabular"/> <param name="input_unanno" value="galaxy_input_pre.fasta"/> <param name="outputs" value="circle_data,header_anno,anno_stats"/> <output name="header_anno" file="output_advanced_header_anno.xlsx" decompress="true"/> <output name="anno_stats" file="output_advanced_anno_out.txt"/> <output name="circle_data" file="advanced_circle_data.txt"/> <section name="advanced"> <param name="uncertain_threshold" value="0.8"/> <param name="eval_threshold" value="1e-8"/> <param name="use_counts" value="True"/> </section> </test> </tests> <help><![CDATA[ **BLAST Annotation Processor** This tool processes BLAST annotation results and generates various quality control and visualization outputs. **Inputs:** - **Annotated BLAST output**: Tabular BLAST output file with taxonomic annotations. Expected format is standard BLAST tabular output with taxonomic information in the last column. - **Original unannotated sequences**: FASTA file containing the original sequences that were used for BLAST search. This is used to calculate annotation statistics. **Outputs:** - **E-value distribution plot**: Visualization showing the distribution of E-values across all annotated sequences. - **Taxonomic report**: Kraken2-like format report showing taxonomic composition with read counts and percentages. Includes information about uncertain taxonomic assignments. - **Circular taxonomic data**: Json data to generate a circular sunburst-style diagram showing taxonomic composition across all taxonomic levels (Kingdom -> Species). - **Header annotations table**: Excel workbook listing each sequence header with its taxonomic assignment and E-value. - **Annotation statistics**: Summary statistics about annotation success rates and sequence counts. **Parameters:** - **Uncertain threshold**: When multiple conflicting taxonomic assignments exist for a sequence, this threshold determines whether to use the most common assignment (if it exceeds the threshold) or mark it as "Uncertain taxa". - **E-value threshold**: Sequences with E-values higher than this threshold are filtered out from the analysis. - **Use read counts**: Determines whether circular data reflects the abundance of reads (checked) or just count unique taxonomic assignments (unchecked). #Query ID #Subject #Subject accession #Subject Taxonomy ID #Identity percentage #Coverage #evalue #bitscore #Source #Taxonomy **Expected Input Format:** The annotated BLAST file should be in tabular format with at least 7 columns: 1. Query ID 2. Subject ID 3. Subject accession 4. Subject Taxonomy ID 5. Identity percentage 6. Coverage 7. Evalue 8. Bitscore 9. Source 10. Taxonomy **Note:** This tool processes files that have been deduplicated and contain read count information in the sequence headers in the format: `sequence_name(count_number)`. **Credits** Authors = Onno de Gorter, 2025. Based on a script by Nick Kortleven, translated, modified and wrapped by Onno de Gorter, Developed for the New light on old remedies project, a PhD research by Anja Fischer ]]></help> </tool>
