Mercurial > repos > onnodg > cdhit_analysis
view tests/test_cdhit_analysis.py @ 1:ff68835adb2b draft
planemo upload for repository https://github.com/Onnodg/Naturalis_NLOOR/tree/main/NLOOR_scripts/process_clusters_tool commit d771f9fbfd42bcdeda1623d954550882a0863847-dirty
| author | onnodg |
|---|---|
| date | Mon, 20 Oct 2025 12:27:31 +0000 |
| parents | 00d56396b32a |
| children |
line wrap: on
line source
""" Test suite for CD-HIT cluster analysis processor. """ import pytest from pathlib import Path import pandas as pd import os import sys # Add module path sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from Stage_1_translated.NLOOR_scripts.process_clusters_tool.cdhit_analysis import ( parse_cluster_file, process_cluster_data, calculate_cluster_taxa, write_similarity_output, write_evalue_output, write_count_output, write_taxa_clusters_output, write_taxa_processed_output, ) class TestCDHitAnalysis: """Test class for CD-HIT cluster analysis processor using real XLSX test data.""" @pytest.fixture(scope="class") def test_data_dir(self): """Return path to the test-data directory with real XLSX files.""" base_dir = Path("Stage_1_translated/NLOOR_scripts/process_clusters_tool/test-data") assert base_dir.exists(), f"Test data directory does not exist: {base_dir}" return base_dir @pytest.fixture(scope="class") def sample_cluster_file(self, test_data_dir): """Return path to the sample cluster XLSX file.""" cluster_file = test_data_dir / "29-test.clstr.txt" assert cluster_file.exists(), f"Sample cluster file not found: {cluster_file}" return str(cluster_file) @pytest.fixture(scope="class") def sample_annotation_file(self, test_data_dir): """Return path to the sample annotation XLSX file.""" annotation_file = test_data_dir / "header_anno_29_test.xlsx" assert annotation_file.exists(), f"Sample annotation file not found: {annotation_file}" return str(annotation_file) @pytest.fixture(scope="class") def parsed_clusters(self, sample_cluster_file, sample_annotation_file): """Parse the sample cluster file with annotations.""" return parse_cluster_file(sample_cluster_file, sample_annotation_file) def test_cluster_parsing_structure(self, parsed_clusters): """ Test 1: Cluster File Parsing Structure Verifies that cluster files are correctly parsed into the expected data structure with proper extraction of headers, counts, similarities, and cluster groupings. """ # Should have 4 clusters based on sample data # for x in parsed_clusters: print(x); assert len(parsed_clusters) == 24, f"Expected 24 clusters, got {len(parsed_clusters)}" # Test Cluster 0 structure (3 members) cluster_0 = parsed_clusters[0] assert len(cluster_0) == 41, "Cluster 0 should have 41 members" cluster_3 = parsed_clusters[3] assert len(cluster_3) == 4, "Cluster 3 should have 4 members" # Check specific member data assert 'M01687:476:000000000-LL5F5:1:2119:23468:21624_CONS' in cluster_0, "this read should be in cluster 0" read1_data = cluster_0['M01687:476:000000000-LL5F5:1:2119:23468:21624_CONS'] assert read1_data['count'] == 1, "read1 count should be 1" assert read1_data['similarity'] == 97.78, "read1 should be representative (100% similarity)" assert 'Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Uncertain taxa / Uncertain taxa' in read1_data['taxa'], "read1 should have this taxa" # Check non-representative member assert 'M01687:476:000000000-LL5F5:1:1107:11168:7701_CONS' in cluster_0, "this read should be in cluster 0" read2_data = cluster_0['M01687:476:000000000-LL5F5:1:1107:11168:7701_CONS'] assert read2_data['count'] == 1, "read2 count should be 50" assert read2_data['similarity'] == 100, "read2 similarity should be 100%" assert read2_data['taxa'] == "Unannotated read" # Test single-member cluster (Cluster 2) cluster_2 = parsed_clusters[2] assert len(cluster_2) == 1, "Cluster 2 should have 1 member" assert 'M01687:476:000000000-LL5F5:1:2108:17627:10678_CONS' in cluster_2, "this read should be in cluster 2" print("✓ Test 1 PASSED: Cluster file parsing structure correct") def test_annotation_integration(self, parsed_clusters): """ Test 2: Annotation Integration Verifies that annotations from the separate annotation file are correctly matched to cluster members based on header names. """ # Check that annotations were properly integrated cluster_0 = parsed_clusters[0] # Verify e-values are correctly assigned assert cluster_0['M01687:476:000000000-LL5F5:1:1102:8813:1648_CONS']['evalue'] == 1.41e-39, "read1 e-value incorrect" assert cluster_0['M01687:476:000000000-LL5F5:1:1102:23329:6743_CONS']['evalue'] == 2.32e-37, "read2 e-value incorrect" assert cluster_0['M01687:476:000000000-LL5F5:1:1102:22397:8283_CONS']['evalue'] == 2.32e-37, "read3 e-value incorrect" # Verify taxa assignments assert 'Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Uncertain taxa / Uncertain taxa' in cluster_0['M01687:476:000000000-LL5F5:1:1102:8813:1648_CONS']['taxa'], "read1 taxa incorrect" assert 'Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Uncertain taxa / Uncertain taxa' in cluster_0['M01687:476:000000000-LL5F5:1:1102:23329:6743_CONS']['taxa'], "read2 taxa incorrect" assert 'Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Uncertain taxa / Uncertain taxa' in cluster_0['M01687:476:000000000-LL5F5:1:1102:22397:8283_CONS']['taxa'], "read3 taxa incorrect" # Test missing annotation handling (if any reads lack annotations) # All our test reads have annotations, so this tests the default case for cluster in parsed_clusters: for header, data in cluster.items(): if data['evalue'] == 'Unannotated read': assert data['taxa'] == 'Unannotated read', "Unannotated handling incorrect" print("✓ Test 2 PASSED: Annotations correctly integrated with cluster data") def test_cluster_data_processing(self, parsed_clusters): """ Test 3: Cluster Data Processing Tests the processing of individual clusters to extract evaluation lists, similarity lists, and taxa dictionaries with correct count aggregation. """ # Test processing of Cluster 0 (mixed taxa) cluster_0 = parsed_clusters[0] eval_list, simi_list, taxa_dict = process_cluster_data(cluster_0) # Check eval_list structure # for x in eval_list: print(x) assert eval_list[0] == 2, "Two unannotated reads in this cluster, should be 2" assert len(eval_list) == 409, "Should have 409 annotated reads + 2 unnanotated reads (counted as 1)" # Check that e-values are correctly converted and repeated by count eval_values = eval_list[1:] # Skip unannotated count read1_evals = [e for e in eval_values if e == 1.41e-39] assert len(read1_evals) == 365, "Should have 100 instances of read1's e-value" # # Check similarity list # for x in simi_list: print(x) assert len(simi_list) == 410, "Should have 410 similarity values" read1_similarities = [s for s in simi_list if s == 100.0] assert len(read1_similarities) == 2, "Should have 2 instances of 100% similarity" assert taxa_dict['Unannotated read'] == 2, "Unannotated reads should be 2" assert taxa_dict['Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Uncertain taxa / Uncertain taxa'] == 406, "taxa should be 406" assert taxa_dict['Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Uncertain taxa / Uncertain taxa / Uncertain taxa'] == 1, "taxa should be 1" assert taxa_dict['Viridiplantae / Streptophyta / Magnoliopsida / Ericales / Actinidiaceae / Actinidia / Actinidia kolomikta'] == 1, "taxa should be 1" print("✓ Test 3 PASSED: Cluster data processing produces correct aggregated data") def test_taxa_calculation_simple_case(self, parsed_clusters): """ Test 4: Taxa Calculation - Simple Case Tests taxonomic resolution for clusters with clear dominant taxa (single taxa or overwhelming majority). """ # Create test arguments class TestArgs: uncertain_taxa_use_ratio = 0.5 min_to_split = 0.45 min_count_to_split = 10 args = TestArgs() # Test Cluster 1 (should be clear Archaea) cluster_5 = parsed_clusters[5] _, _, taxa_dict_5 = process_cluster_data(cluster_5) result_5 = calculate_cluster_taxa(taxa_dict_5, args) # Should return single taxa group for Archaea assert len(result_5) == 1, "Single dominant taxa should not split" dominant_taxa = list(result_5[0].keys())[0] assert 'Viridiplantae / Streptophyta / Magnoliopsida / Fagales / Juglandaceae / ' \ 'Uncertain taxa / Uncertain taxa' in dominant_taxa, "Should identify Juglandaceae as dominant" # Test single-member cluster (Cluster 2) cluster_2 = parsed_clusters[2] _, _, taxa_dict_2 = process_cluster_data(cluster_2) result_2 = calculate_cluster_taxa(taxa_dict_2, args) total = sum(value for d in result_2 for value in d.values()) assert total == 1, "Single member cluster should not split" print("✓ Test 4 PASSED: Simple taxa calculation cases work correctly") def test_taxa_calculation_complex_splitting(self, parsed_clusters): """ Test 5: Taxa Calculation - Complex Splitting Tests the recursive taxonomic resolution algorithm for clusters with multiple competing taxa that should be split based on thresholds. """ class TestArgs: uncertain_taxa_use_ratio = 0.5 min_to_split = 0.30 # Lower threshold to encourage splitting min_count_to_split = 5 # Lower threshold to encourage splitting args = TestArgs() # Test Cluster 3 (mixed Firmicutes and Proteobacteria) cluster_3 = parsed_clusters[3] _, _, taxa_dict_3 = process_cluster_data(cluster_3) # Manual check of expected taxa distribution expected_taxa = {} for header, data in cluster_3.items(): taxa = data['taxa'] count = data['count'] expected_taxa[taxa] = expected_taxa.get(taxa, 0) + count result_3 = calculate_cluster_taxa(taxa_dict_3, args) # With mixed taxa and low thresholds, should potentially split # The exact behavior depends on the algorithm implementation total_result_count = sum(sum(group.values()) for group in result_3) expected_total = sum(expected_taxa.values()) assert total_result_count == expected_total, "Total counts should be preserved after splitting" print("✓ Test 5 PASSED: Complex taxa splitting preserves counts and follows thresholds") def test_statistical_calculations(self, parsed_clusters): """ Test 6: Statistical Calculations Verifies that similarity and e-value statistics are calculated correctly including averages, standard deviations, and distributions. """ # Process all clusters to get combined data eval_list, simi_list, _ = process_cluster_data(parsed_clusters[5]) # Test similarity statistics if eval_list: expected_avg = sum(simi_list) / len(simi_list) # Manual verification of a few key values # From our test data: read1=100% (100 times), read2=96.67% (50 times), etc. total_similarity_sum = (100.0 * 166) + (98.88 * 9) + 98.86 total_count = 176 manual_avg = total_similarity_sum / total_count assert abs( expected_avg - manual_avg) < 0.01, f"Similarity average mismatch: expected ~{manual_avg}, got {expected_avg}" # Test e-value data structure annotated_evals = eval_list[1:] assert all(isinstance(e, (int, float)) for e in annotated_evals), "All e-values should be numeric" assert all(e > 0 for e in annotated_evals), "All e-values should be positive" print("✓ Test 6 PASSED: Statistical calculations are mathematically correct") def test_output_file_formats(self, test_data_dir, sample_cluster_file, sample_annotation_file): """ Test 7: Output File Formats Tests that all output files are created with correct structure and content, including text files, Excel files with multiple sheets, and plot files. """ output_dir = test_data_dir # Parse data clusters = parse_cluster_file(sample_cluster_file, sample_annotation_file) # Process all clusters cluster_data_list = [] all_eval_data = [0] all_simi_data = [] for cluster in clusters: eval_list, simi_list, taxa_dict = process_cluster_data(cluster) cluster_data_list.append((eval_list, simi_list, taxa_dict)) all_eval_data[0] += eval_list[0] all_eval_data.extend(eval_list[1:]) all_simi_data.extend(simi_list) # Test similarity output simi_output = output_dir / "test_similarity.txt" write_similarity_output(all_simi_data, str(simi_output)) assert simi_output.exists(), "Similarity output file not created" with open(simi_output, 'r') as f: content = f.read() assert "# Average similarity:" in content, "Missing average similarity in output" assert "# Standard deviation:" in content, "Missing standard deviation in output" assert "similarity\tcount" in content, "Missing header in similarity output" # Test e-value output eval_output = output_dir / "test_evalue.txt" write_evalue_output(all_eval_data, str(eval_output)) assert eval_output.exists(), "E-value output file not created" with open(eval_output, 'r') as f: content = f.read() assert "evalue\tcount" in content, "Missing header in e-value output" # Test count output count_output = output_dir / "test_count.txt" write_count_output(all_eval_data, cluster_data_list, str(count_output)) assert count_output.exists(), "Count output file not created" with open(count_output, 'r') as f: content = f.read() assert "cluster\tunannotated\tannotated" in content, "Missing header in count output" assert "TOTAL\t" in content, "Missing total row in count output" # Test taxa clusters Excel output taxa_clusters_output = output_dir / "test_taxa_clusters.xlsx" write_taxa_clusters_output(cluster_data_list, str(taxa_clusters_output)) assert taxa_clusters_output.exists(), "Taxa clusters Excel file not created" df = pd.read_excel(taxa_clusters_output, sheet_name='Raw_Taxa_Clusters') expected_columns = ['cluster', 'count', 'taxa_full', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'] assert all(col in df.columns for col in expected_columns), "Missing columns in taxa clusters output" print("✓ Test 7 PASSED: All output file formats are correct and complete") def test_taxa_processed_output_structure(self, test_data_dir, sample_cluster_file, sample_annotation_file): """ Test 8: Processed Taxa Output Structure Tests the complex processed taxa Excel output with multiple sheets and parameter tracking. """ output_dir = test_data_dir class TestArgs: uncertain_taxa_use_ratio = 0.6 min_to_split = 0.35 min_count_to_split = 15 show_unannotated_clusters = True args = TestArgs() # Parse and process data clusters = parse_cluster_file(sample_cluster_file, sample_annotation_file) cluster_data_list = [] for cluster in clusters: eval_list, simi_list, taxa_dict = process_cluster_data(cluster) cluster_data_list.append((eval_list, simi_list, taxa_dict)) # Test processed taxa output processed_output = output_dir / "test_processed_taxa.xlsx" write_taxa_processed_output(cluster_data_list, args, str(processed_output)) assert processed_output.exists(), "Processed taxa Excel file not created" # Check multiple sheets exist xl_file = pd.ExcelFile(processed_output) expected_sheets = ['Processed_Taxa_Clusters', 'Settings'] assert all(sheet in xl_file.sheet_names for sheet in expected_sheets), "Missing sheets in processed taxa output" # Check main data sheet df_main = pd.read_excel(processed_output, sheet_name='Processed_Taxa_Clusters') expected_columns = ['cluster', 'count', 'taxa_full', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'] assert all(col in df_main.columns for col in expected_columns), "Missing columns in processed taxa sheet" # Check settings sheet df_settings = pd.read_excel(processed_output, sheet_name='Settings') assert 'Parameter' in df_settings.columns, "Missing Parameter column in settings" assert 'Value' in df_settings.columns, "Missing Value column in settings" # Verify settings values are recorded settings_dict = dict(zip(df_settings['Parameter'], df_settings['Value'])) assert settings_dict['uncertain_taxa_use_ratio'] == 0.6, "Settings not correctly recorded" assert settings_dict['min_to_split'] == 0.35, "Settings not correctly recorded" print("✓ Test 8 PASSED: Processed taxa output has correct structure and settings tracking") def test_edge_cases(self, test_data_dir): """ Test 9: Edge Cases and Error Handling Tests handling of edge cases like empty files, missing annotations, single-member clusters, and malformed input data. """ input_dir = test_data_dir # Test empty cluster file empty_cluster = input_dir / "empty_cluster.clstr" with open(empty_cluster, 'w') as f: f.write("") clusters_empty = parse_cluster_file(str(empty_cluster)) assert len(clusters_empty) == 0, "Empty cluster file should produce no clusters" # Test cluster file with no annotations simple_cluster = input_dir / "simple_cluster.clstr" simple_cluster_content = """>Cluster 0 0 100nt, >read_no_anno:50... * """ with open(simple_cluster, 'w') as f: f.write(simple_cluster_content) with pytest.raises(UnboundLocalError): parse_cluster_file(str(simple_cluster), raise_on_error=True) # Test malformed cluster entries (missing parts) malformed_cluster = input_dir / "malformed_cluster.clstr" malformed_content = """>Cluster 0 0 100nt, >read1:50..._CONS(50) * invalid_line_without_proper_format 1 90nt, >read2:25..._CONS(25) at /+/95% """ annotations_malformed = input_dir / "test_pytest.xlsx" with open(malformed_cluster, 'w') as f: f.write(malformed_content) clusters_malformed = parse_cluster_file(str(malformed_cluster), str(annotations_malformed)) # Should still parse valid entries and skip invalid ones assert len(clusters_malformed) == 1, "Should parse valid entries from malformed file" assert len(clusters_malformed[0]) == 2, "Should have 2 valid read" assert clusters_malformed[0]['read1:50..._CONS']['evalue'] == 1.0e-50 assert clusters_malformed[0]['read2:25..._CONS']['count'] == 25 print("✓ Test 9 PASSED: Edge cases handled gracefully without crashes") def test_count_preservation_across_processing(self, parsed_clusters): """ Test 10: Count Preservation Across Processing Pipeline Verifies that read counts are preserved throughout the entire processing pipeline from cluster parsing through taxa calculation to final output. """ # Calculate expected total counts from original data expected_total = 0 for cluster in parsed_clusters: for header, data in cluster.items(): expected_total += data['count'] # Process through pipeline and verify counts at each stage total_from_processing = 0 taxa_processing_totals = [] class TestArgs: uncertain_taxa_use_ratio = 0.5 min_to_split = 0.45 min_count_to_split = 10 args = TestArgs() for cluster in parsed_clusters: eval_list, simi_list, taxa_dict = process_cluster_data(cluster) # Check that cluster processing preserves counts cluster_total = eval_list[0] + len(eval_list[1:]) # unannotated + annotated cluster_expected = sum(data['count'] for data in cluster.values()) assert cluster_total == cluster_expected, f"Count mismatch in cluster processing: expected {cluster_expected}, got {cluster_total}" total_from_processing += cluster_total # Check taxa calculation preserves counts taxa_results = calculate_cluster_taxa(taxa_dict, args) taxa_total = sum(sum(group.values()) for group in taxa_results) taxa_processing_totals.append(taxa_total) # Verify taxa dict total matches taxa_dict_total = sum(taxa_dict.values()) assert taxa_total <= taxa_dict_total, f"Count mismatch in taxa calculation: expected {taxa_dict_total}, got {taxa_total}" # Final verification assert total_from_processing == expected_total, f"Total count preservation failed: expected {expected_total}, got {total_from_processing}" # Verify sum of all taxa processing equals original total_taxa_processed = sum(taxa_processing_totals) assert total_taxa_processed <= expected_total, f"Taxa processing total mismatch: expected {expected_total}, got {total_taxa_processed}" print("✓ Test 10 PASSED: Read counts preserved throughout entire processing pipeline") def test_11_parse_arguments_all_flags(self, tmp_path): """ Test 11: Argument Parsing with All Flags Ensures parse_arguments correctly handles all optional flags and values. """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca args = ca.parse_arguments([ '--input_cluster', str(tmp_path / "dummy.clstr"), '--simi_plot_y_min', '90', '--simi_plot_y_max', '99', '--uncertain_taxa_use_ratio', '0.3', '--min_to_split', '0.2', '--min_count_to_split', '5', '--show_unannotated_clusters', '--make_taxa_in_cluster_split', '--print_empty_files' ]) assert args.simi_plot_y_min == 90 assert args.print_empty_files is True def test_12_process_cluster_data_valueerror(self): """ Test 12: Process Cluster Data with Bad E-value Ensures ValueError branches are handled and unannotated counts increase. """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca cluster = { "seq1": {"count": 1, "similarity": 95.0, "taxa": "taxonA", "evalue": "not_a_number"} } eval_list, simi_list, taxa_dict = ca.process_cluster_data(cluster) assert eval_list[0] == 1 # unannotated read def test_13_write_similarity_and_evalue_empty(self, tmp_path): """ Test 13: Output Writers with Empty Data """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca sim_file = tmp_path / "sim.txt" eval_file = tmp_path / "eval.txt" ca.write_similarity_output([], str(sim_file)) assert not sim_file.exists() or sim_file.read_text() == "" ca.write_evalue_output([5], str(eval_file)) assert "unannotated" in eval_file.read_text() def test_14_write_count_zero_and_taxa_clusters_incomplete(self, tmp_path): """ Test 14: Count Writer with Zero Data and Taxa Clusters with Incomplete Taxa """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca count_file = tmp_path / "count.txt" taxa_file = tmp_path / "taxa.xlsx" ca.write_count_output([0], [], str(count_file)) assert "TOTAL" in count_file.read_text() cluster_data = [([0], [], {"bad": 1})] ca.write_taxa_clusters_output(cluster_data, str(taxa_file)) assert taxa_file.exists() def test_15_write_taxa_processed_uncertain_and_settings(self, tmp_path): """ Test 15: Processed Taxa Output with Settings """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca class Args: uncertain_taxa_use_ratio = 0.5 min_to_split = 0.2 min_count_to_split = 2 show_unannotated_clusters = True out_file = tmp_path / "processed.xlsx" cluster_data = [([0], [], {"Unannotated read": 2})] ca.write_taxa_processed_output(cluster_data, Args(), str(out_file)) assert out_file.exists() def test_16_create_evalue_plot_edge_cases(self, tmp_path): """ Test 16: E-value Plot Edge Cases """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca out = tmp_path / "plot.png" # Only unannotated ca.create_evalue_plot([0], [0], str(out)) assert not out.exists() or out.stat().st_size == 0 # Empty after filtering ca.create_evalue_plot([0, ], [], str(out)) assert not out.exists() or out.stat().st_size == 0 # With valid values ca.create_evalue_plot([0, 1e-5, 1e-3], [2], str(out)) assert out.exists() def test_17_main_runs_and_prints(self, tmp_path, capsys): """ Test 17: Main Entry Point """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca clstr = tmp_path / "simple.clstr" clstr.write_text(">Cluster 0\n0 100nt, >seq1... *\n") out = tmp_path / "sim.txt" args = [ '--input_cluster', str(clstr), '--output_similarity_txt', str(out) ] ca.main(args) captured = capsys.readouterr() assert "Processing complete" in captured.out def test_18a_prepare_evalue_histogram_valid_data(self): """ Test 18a: prepare_evalue_histogram returns correct counts/bins. """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca counts, bins = ca.prepare_evalue_histogram([1e-5, 1e-3, 0.5], []) assert counts.sum() == 3 # 3 entries counted assert len(bins) == 51 # 50 bins => 51 edges def test_18b_prepare_evalue_histogram_empty(self): """ Test 18b: prepare_evalue_histogram with empty/invalid data returns (None, None). """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca counts, bins = ca.prepare_evalue_histogram([0, None, "bad"], []) assert counts is None assert bins is None def test_18c_create_evalue_plot_creates_file_and_returns_data(self, tmp_path): """ Test 18c: create_evalue_plot saves a PNG and returns numeric data. """ from Stage_1_translated.NLOOR_scripts.process_clusters_tool import cdhit_analysis as ca out = tmp_path / "eval.png" counts, bins = ca.create_evalue_plot_test([1e-5, 1e-3, 0.5], [], str(out)) assert out.exists() assert counts.sum() == 3 assert len(bins) == 51 if __name__ == "__main__": # Run all tests in this file pytest.main([__file__])
