Mercurial > repos > perssond > coreograph
view coreograph.xml @ 3:ee92746d141a draft default tip
planemo upload for repository https://github.com/ohsu-comp-bio/UNetCoreograph commit 72a33d7c3ad18e717ec61c6b845099d69b9b7abd
author | goeckslab |
---|---|
date | Tue, 20 Sep 2022 17:34:36 +0000 |
parents | 224e0cf4aaeb |
children |
line wrap: on
line source
<tool id="unet_coreograph" name="UNetCoreograph" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="19.01"> <description>TMA core detection and dearraying</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <expand macro="version_cmd"/> <command detect_errors="aggressive"><![CDATA[ #set $type_corrected = 'image.' + str($source_image.file_ext) ln -s '$source_image' '$type_corrected' && @CMD_BEGIN@ python \$UNET_PATH --imagePath '$type_corrected' --downsampleFactor $downsamplefactor --channel $channel --buffer $buffer --sensitivity $sensitivity $cluster $tissue --outputPath '.' ]]></command> <inputs> <param name="source_image" type="data" format="tiff,ome.tiff" label="Registered TIFF"/> <param name="downsamplefactor" type="integer" value="5" label="Down Sample Factor"/> <param name="channel" type="integer" value="0" label="Channel"/> <param name="buffer" type="float" value="2.0" label="Buffer"/> <param name="sensitivity" type="float" value="0.3" label="Sensitivity"/> <param name="cluster" type="boolean" truevalue="--cluster" falsevalue="" checked="false" label="Cluster"/> <param name="tissue" type="boolean" truevalue="--tissue" falsevalue="" checked="false" label="Tissue"/> </inputs> <outputs> <collection name="tma_sections" type="list" label="${tool.name} on ${on_string}: Images"> <discover_datasets pattern="(?P<designation>[0-9]+)\.tif" format="tiff" visible="false"/> </collection> <collection name="masks" type="list" label="${tool.name} on ${on_string}: Masks"> <discover_datasets pattern="(?P<designation>[0-9]+)_mask\.tif" directory="masks" format="tiff" visible="false"/> </collection> <data name="TMA_MAP" format="tiff" label="${tool.name} on ${on_string}: TMA Map" from_work_dir="TMA_MAP.tif"/> </outputs> <tests> <test> <param name="source_image" value="coreograph_test.tiff" /> <output_collection name="tma_sections" type="list"> <element name="1" ftype="tiff"> <assert_contents> <has_size value="18000" delta="1000" /> </assert_contents> </element> <element name="2" ftype="tiff"> <assert_contents> <has_size value="18000" delta="1000" /> </assert_contents> </element> </output_collection> <output_collection name="masks" type="list"> <element name="1" ftype="tiff"> <assert_contents> <has_size value="345" delta="100" /> </assert_contents> </element> <element name="2" ftype="tiff"> <assert_contents> <has_size value="345" delta="100" /> </assert_contents> </element> </output_collection> <output name="TMA_MAP" ftype="tiff"> <assert_contents> <has_size value="530" delta="100" /> </assert_contents> </output> </test> </tests> <help><![CDATA[ ------------------- UNet Coreograph ------------------- **Coreograph** uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types Training sets were acquired at 0.2micron/pixel resolution and downsampled 1/32 times to speed up performance. Once the center of each core has been identifed, active contours is used to generate a tissue mask of each core that can aid downstream single cell segmentation. A GPU is not required but will reduce computation time. **Inputs** A tif or ome.tiff image multiple tissues, such as a tissue microarray. **Outputs** Coreograph exports these files: 1. individual cores as tiff stacks with user-selectable channel ranges 2. binary tissue masks (saved in the 'mask' subfolder) 3. a TMA map showing the labels and outlines of each core for quality control purposes ]]></help> <expand macro="citations" /> </tool>