diff save_tifffile_pyramid.py @ 1:41e8efe8df43 draft

"planemo upload for repository https://github.com/ohsu-comp-bio/S3segmenter commit c8f72e04db2cc6cc26f0359d5aa3b1a972bc6d53"
author watsocam
date Fri, 11 Mar 2022 23:37:49 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/save_tifffile_pyramid.py	Fri Mar 11 23:37:49 2022 +0000
@@ -0,0 +1,114 @@
+import numpy as np
+import tifffile
+import skimage.transform
+
+PHYSICAL_SIZE_UNIT = ['Ym', 'Zm', 'Em', 'Pm', 'Tm', 'Gm', 'Mm', 'km', 'hm', 'dam', 'm', 'dm', 'cm', 'mm', 'µm', 'nm', 'pm', 'fm', 'am', 'zm', 'ym', 'Å', 'thou', 'li', 'in', 'ft', 'yd', 'mi', 'ua', 'ly', 'pc', 'pt', 'pixel', 'reference frame']
+
+def normalize_image_shape(img):
+    assert img.ndim in (2, 3), (
+        'image must be 2D (Y, X) or 3D (C, Y, X)'
+    )
+    if img.ndim == 2:
+        img = img.reshape(1, *img.shape)
+    assert np.argmin(img.shape) == 0, (
+        '3D image must be in (C, Y, X) order'
+    )
+    return img
+
+def save_pyramid(
+    out_img, output_path,
+    pixel_sizes=(1, 1),
+    pixel_size_units=('µm', 'µm'),
+    channel_names=None,
+    software=None,
+    is_mask=False
+):
+    assert '.ome.tif' in str(output_path)
+    assert len(pixel_sizes) == len(pixel_size_units) == 2
+    assert out_img.ndim in (2, 3), (
+        'image must be either 2D (Y, X) or 3D (C, Y, X)'
+    )
+    
+    img_shape_ori = out_img.shape
+    out_img = normalize_image_shape(out_img)
+    img_shape = out_img.shape
+
+    size_x, size_y = np.array(pixel_sizes, dtype=float)
+    unit_x, unit_y = pixel_size_units
+
+    assert (unit_x in PHYSICAL_SIZE_UNIT) & (unit_y in PHYSICAL_SIZE_UNIT), (
+        f'pixel_size_units must be a tuple of the followings: '
+        f'{", ".join(PHYSICAL_SIZE_UNIT)}'
+    )
+
+    n_channels = img_shape[0]
+    if channel_names == None:
+        channel_names = [f'Channel {i}' for i in range(n_channels)]
+    else:
+        if type(channel_names) == str:
+            channel_names = [channel_names]
+        n_channel_names = len(channel_names)
+        assert n_channel_names == n_channels, (
+            f'number of channel_names ({n_channel_names}) must match '
+            f'number of channels ({n_channels})'
+        )
+    
+    if software == None:
+        software = ''
+        
+    metadata = {
+        'Creator': software,
+        'Pixels': {
+            'PhysicalSizeX': size_x,
+            'PhysicalSizeXUnit': unit_x,
+            'PhysicalSizeY': size_y,
+            'PhysicalSizeYUnit': unit_y,
+        },
+        'Channel': {'Name': channel_names},
+        
+    }
+
+    max_size = np.max(img_shape)
+    subifds = np.ceil(np.log2(max_size / 1024)).astype(int)
+    
+    # use optimal tile size for disk space
+    tile_size = 16*np.ceil(
+        np.array(img_shape[1:]) / (2**subifds) / 16
+    ).astype(int)
+    options = {
+        'tile': tuple(tile_size)
+    }
+
+    with tifffile.TiffWriter(output_path, bigtiff=True) as tiff_out:
+        tiff_out.write(
+            data=out_img,
+            metadata=metadata,
+            software=software,
+            subifds=subifds,
+            **options
+        )
+        for i in range(subifds):
+            if i == 0:
+                down_2x_img = downsize_img_channels(out_img, is_mask=is_mask)
+            else:
+                down_2x_img = downsize_img_channels(down_2x_img, is_mask=is_mask)
+            tiff_out.write(
+                data=down_2x_img,
+                subfiletype=1,
+                **options
+            )
+
+    out_img = out_img.reshape(img_shape_ori)
+    return
+
+def downsize_channel(img, is_mask):
+    if is_mask:
+        return img[::2, ::2]
+    else:
+        return skimage.transform.downscale_local_mean(img, (2, 2)).astype(img.dtype)
+
+def downsize_img_channels(img, is_mask):
+    return np.array([
+        downsize_channel(c, is_mask=is_mask)
+        for c in img
+    ])