Mercurial > repos > perssond > s3segmenter
view save_tifffile_pyramid.py @ 1:41e8efe8df43 draft
"planemo upload for repository https://github.com/ohsu-comp-bio/S3segmenter commit c8f72e04db2cc6cc26f0359d5aa3b1a972bc6d53"
author | watsocam |
---|---|
date | Fri, 11 Mar 2022 23:37:49 +0000 |
parents | |
children |
line wrap: on
line source
import numpy as np import tifffile import skimage.transform PHYSICAL_SIZE_UNIT = ['Ym', 'Zm', 'Em', 'Pm', 'Tm', 'Gm', 'Mm', 'km', 'hm', 'dam', 'm', 'dm', 'cm', 'mm', 'µm', 'nm', 'pm', 'fm', 'am', 'zm', 'ym', 'Å', 'thou', 'li', 'in', 'ft', 'yd', 'mi', 'ua', 'ly', 'pc', 'pt', 'pixel', 'reference frame'] def normalize_image_shape(img): assert img.ndim in (2, 3), ( 'image must be 2D (Y, X) or 3D (C, Y, X)' ) if img.ndim == 2: img = img.reshape(1, *img.shape) assert np.argmin(img.shape) == 0, ( '3D image must be in (C, Y, X) order' ) return img def save_pyramid( out_img, output_path, pixel_sizes=(1, 1), pixel_size_units=('µm', 'µm'), channel_names=None, software=None, is_mask=False ): assert '.ome.tif' in str(output_path) assert len(pixel_sizes) == len(pixel_size_units) == 2 assert out_img.ndim in (2, 3), ( 'image must be either 2D (Y, X) or 3D (C, Y, X)' ) img_shape_ori = out_img.shape out_img = normalize_image_shape(out_img) img_shape = out_img.shape size_x, size_y = np.array(pixel_sizes, dtype=float) unit_x, unit_y = pixel_size_units assert (unit_x in PHYSICAL_SIZE_UNIT) & (unit_y in PHYSICAL_SIZE_UNIT), ( f'pixel_size_units must be a tuple of the followings: ' f'{", ".join(PHYSICAL_SIZE_UNIT)}' ) n_channels = img_shape[0] if channel_names == None: channel_names = [f'Channel {i}' for i in range(n_channels)] else: if type(channel_names) == str: channel_names = [channel_names] n_channel_names = len(channel_names) assert n_channel_names == n_channels, ( f'number of channel_names ({n_channel_names}) must match ' f'number of channels ({n_channels})' ) if software == None: software = '' metadata = { 'Creator': software, 'Pixels': { 'PhysicalSizeX': size_x, 'PhysicalSizeXUnit': unit_x, 'PhysicalSizeY': size_y, 'PhysicalSizeYUnit': unit_y, }, 'Channel': {'Name': channel_names}, } max_size = np.max(img_shape) subifds = np.ceil(np.log2(max_size / 1024)).astype(int) # use optimal tile size for disk space tile_size = 16*np.ceil( np.array(img_shape[1:]) / (2**subifds) / 16 ).astype(int) options = { 'tile': tuple(tile_size) } with tifffile.TiffWriter(output_path, bigtiff=True) as tiff_out: tiff_out.write( data=out_img, metadata=metadata, software=software, subifds=subifds, **options ) for i in range(subifds): if i == 0: down_2x_img = downsize_img_channels(out_img, is_mask=is_mask) else: down_2x_img = downsize_img_channels(down_2x_img, is_mask=is_mask) tiff_out.write( data=down_2x_img, subfiletype=1, **options ) out_img = out_img.reshape(img_shape_ori) return def downsize_channel(img, is_mask): if is_mask: return img[::2, ::2] else: return skimage.transform.downscale_local_mean(img, (2, 2)).astype(img.dtype) def downsize_img_channels(img, is_mask): return np.array([ downsize_channel(c, is_mask=is_mask) for c in img ])