changeset 2:96d0d969ebc9 draft default tip

planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/s3segmenter commit 0f4f17235c5961c2fd3d4c30180507f66214c11d
author goeckslab
date Fri, 16 Sep 2022 20:05:54 +0000
parents 41e8efe8df43
children
files S3segmenter.py macros.xml rowit.py s3segmenter.xml save_tifffile_pyramid.py test-data/stack_probabilities.tiff test-data/test.ome.tiff
diffstat 7 files changed, 70 insertions(+), 817 deletions(-) [+]
line wrap: on
line diff
--- a/S3segmenter.py	Fri Mar 11 23:37:49 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,592 +0,0 @@
-import matplotlib.pyplot as plt
-import tifffile
-import os
-import numpy as np
-from skimage import io as skio
-from scipy.ndimage import *
-import scipy.ndimage as ndi
-from skimage.morphology import *
-from skimage.morphology import extrema
-from skimage import morphology
-from skimage.measure import regionprops
-from skimage.transform import resize
-from skimage.filters import gaussian, threshold_otsu, threshold_local
-from skimage.feature import peak_local_max
-from skimage.color import label2rgb
-from skimage.io import imsave,imread
-from skimage.segmentation import clear_border, watershed, find_boundaries
-from scipy.ndimage.filters import uniform_filter
-from os.path import *
-from os import listdir, makedirs, remove
-import pickle
-import shutil
-import fnmatch
-import cv2
-import sys
-import argparse
-import re
-import copy
-import datetime
-from joblib import Parallel, delayed
-from rowit import WindowView, crop_with_padding_mask
-from save_tifffile_pyramid import save_pyramid
-import subprocess
-import ome_types
-
-
-def imshowpair(A,B):
-    plt.imshow(A,cmap='Purples')
-    plt.imshow(B,cmap='Greens',alpha=0.5)
-    plt.show()
-
-    
-def imshow(A):
-    plt.imshow(A)
-    plt.show()
-    
-def overlayOutline(outline,img):
-    img2 = img.copy()
-    stacked_img = np.stack((img2,)*3, axis=-1)
-    stacked_img[outline > 0] = [65535, 0, 0]
-    imshowpair(img2,stacked_img)
-    
-def normI(I):
-    Irs=resize(I,(I.shape[0]//10,I.shape[1]//10) );
-    p1 = np.percentile(Irs,10);
-    J = I-p1;
-    p99 = np.percentile(Irs,99.99);
-    J = J/(p99-p1);
-    return J
-
-def contour_pm_watershed(
-    contour_pm, sigma=2, h=0, tissue_mask=None,
-    padding_mask=None, min_area=None, max_area=None
-):
-    if tissue_mask is None:
-        tissue_mask = np.ones_like(contour_pm)
-    padded = None
-    if padding_mask is not None and np.any(padding_mask == 0):
-        contour_pm, padded = crop_with_padding_mask(
-            contour_pm, padding_mask, return_mask=True
-        )
-        tissue_mask = crop_with_padding_mask(
-            tissue_mask, padding_mask
-        )
-    
-    maxima = peak_local_max(
-        extrema.h_maxima(
-            ndi.gaussian_filter(np.invert(contour_pm), sigma=sigma),
-            h=h
-        ),
-        indices=False,
-        footprint=np.ones((3, 3))
-    )
-    maxima = label(maxima).astype(np.int32)
-    
-    # Passing mask into the watershed function will exclude seeds outside
-    # of the mask, which gives fewer and more accurate segments
-    maxima = watershed(
-        contour_pm, maxima, watershed_line=True, mask=tissue_mask
-    ) > 0
-    
-    if min_area is not None and max_area is not None:
-        maxima = label(maxima, connectivity=1).astype(np.int32)
-        areas = np.bincount(maxima.ravel())
-        size_passed = np.arange(areas.size)[
-            np.logical_and(areas > min_area, areas < max_area)
-        ]
-        maxima *= np.isin(maxima, size_passed)
-        np.greater(maxima, 0, out=maxima)
-
-    if padded is None:
-        return maxima.astype(np.bool)
-    else:
-        padded[padded == 1] = maxima.flatten()
-        return padded.astype(np.bool)
-
-def S3AreaSegmenter(nucleiPM, images, TMAmask, threshold,fileprefix,outputPath):
-    nucleiCenters = nucleiPM[:,:,0]
-    TMAmask= (nucleiCenters>np.amax(nucleiCenters)*0.8)*TMAmask
-    area = []
-    area.append(np.sum(np.sum(TMAmask)))
-    for iChan in range(len(images)):
-        image_gauss = gaussian(resize(images[iChan,:,:],(int(0.25*images.shape[1]),int(0.25*images.shape[2]))),1)
-        if threshold ==-1:
-            threshold = threshold_otsu(image_gauss)
-        mask=resize(image_gauss>threshold,(images.shape[1],images.shape[2]),order = 0)*TMAmask
-        area.append(np.sum(np.sum(mask)))
-    os.mk    
-    np.savetxt(outputPath + os.path.sep + fileprefix + '_area.csv',(np.transpose(np.asarray(area))),fmt='%10.5f')  
-    return TMAmask
-
-def getMetadata(path,commit):
-    with tifffile.TiffFile(path) as tif:
-        if not tif.ome_metadata:
-            try:
-                x_res_tag = tif.pages[0].tags['XResolution'].value
-                y_res_tag = tif.pages[0].tags['YResolution'].value
-                physical_size_x = x_res_tag[0] / x_res_tag[1]
-                physical_size_y = y_res_tag[0] / y_res_tag[1]
-            except KeyError:
-                physical_size_x = 1
-                physical_size_y = 1
-            metadata_args = dict(
-            pixel_sizes=(physical_size_y, physical_size_x),
-            pixel_size_units=('µm', 'µm'),
-            software= 's3segmenter v' + commit
-            )
-        else: 
-            metadata=ome_types.from_xml(tif.ome_metadata)
-            metadata = metadata.images[0].pixels
-            metadata_args = dict(
-            pixel_sizes=(metadata.physical_size_y,metadata.physical_size_x),
-            pixel_size_units=('µm', 'µm'),
-            software= 's3segmenter v' + commit
-            )
-        return metadata_args
-
-def S3NucleiBypass(nucleiPM,nucleiImage,logSigma,TMAmask,nucleiFilter,nucleiRegion):        
-        foregroundMask =  nucleiPM
-        P = regionprops(foregroundMask, nucleiImage)
-        prop_keys = ['mean_intensity', 'label','area']
-        def props_of_keys(prop, keys):
-            return [prop[k] for k in keys]
-        
-        mean_ints, labels, areas = np.array(Parallel(n_jobs=6)(delayed(props_of_keys)(prop, prop_keys) 
-						for prop in P
-						)
-		        ).T
-        del P
-        maxArea = (logSigma[1]**2)*3/4
-        minArea = (logSigma[0]**2)*3/4
-        passed = np.logical_and(areas > minArea, areas < maxArea)
-        
-        foregroundMask *= np.isin(foregroundMask, labels[passed])
-        np.greater(foregroundMask, 0, out=foregroundMask)
-        foregroundMask = label(foregroundMask, connectivity=1).astype(np.int32)
-        return foregroundMask
-
-def S3NucleiSegmentationWatershed(nucleiPM,nucleiImage,logSigma,TMAmask,nucleiFilter,nucleiRegion):
-    nucleiContours = nucleiPM[:,:,1]
-    nucleiCenters = nucleiPM[:,:,0]
-    mask = resize(TMAmask,(nucleiImage.shape[0],nucleiImage.shape[1]),order = 0)>0
-    if nucleiRegion == 'localThreshold' or nucleiRegion == 'localMax':
-        Imax =  peak_local_max(extrema.h_maxima(255-nucleiContours,logSigma[0]),indices=False)
-        Imax = label(Imax).astype(np.int32)
-        foregroundMask =  watershed(nucleiContours, Imax, watershed_line=True)
-        P = regionprops(foregroundMask, np.amax(nucleiCenters) - nucleiCenters - nucleiContours)
-        prop_keys = ['mean_intensity', 'label','area']
-        def props_of_keys(prop, keys):
-            return [prop[k] for k in keys]
-        
-        mean_ints, labels, areas = np.array(Parallel(n_jobs=6)(delayed(props_of_keys)(prop, prop_keys) 
-						for prop in P
-						)
-		        ).T
-        del P
-        maxArea = (logSigma[1]**2)*3/4
-        minArea = (logSigma[0]**2)*3/4
-        passed = np.logical_and.reduce((
-            np.logical_and(areas > minArea, areas < maxArea),
-            np.less(mean_ints, 50)
-            ))
-        
-        foregroundMask *= np.isin(foregroundMask, labels[passed])
-        np.greater(foregroundMask, 0, out=foregroundMask)
-        foregroundMask = label(foregroundMask, connectivity=1).astype(np.int32)
-    
-    else:
-        if len(logSigma)==1:
-             nucleiDiameter  = [logSigma*0.5, logSigma*1.5]
-        else:
-             nucleiDiameter = logSigma
-        logMask = nucleiCenters > 150
-        
-        win_view_setting = WindowView(nucleiContours.shape, 2000, 500)
-    
-        nucleiContours = win_view_setting.window_view_list(nucleiContours)
-        padding_mask = win_view_setting.padding_mask()
-        mask = win_view_setting.window_view_list(mask)
-    
-        maxArea = (logSigma[1]**2)*3/4
-        minArea = (logSigma[0]**2)*3/4
-    
-        foregroundMask = np.array(
-            Parallel(n_jobs=6)(delayed(contour_pm_watershed)(
-                img, sigma=logSigma[1]/30, h=logSigma[1]/30, tissue_mask=tm,
-                padding_mask=m, min_area=minArea, max_area=maxArea
-            ) for img, tm, m in zip(nucleiContours, mask, padding_mask))
-        )
-    
-        del nucleiContours, mask
-    
-        foregroundMask = win_view_setting.reconstruct(foregroundMask)
-        foregroundMask = label(foregroundMask, connectivity=1).astype(np.int32)
-    
-        if nucleiFilter == 'IntPM':
-            int_img = nucleiCenters
-        elif nucleiFilter == 'Int':
-            int_img = nucleiImage
-    
-        print('    ', datetime.datetime.now(), 'regionprops')
-        P = regionprops(foregroundMask, int_img)
-    
-        def props_of_keys(prop, keys):
-            return [prop[k] for k in keys]
-    
-        prop_keys = ['mean_intensity', 'area', 'solidity', 'label']
-        mean_ints, areas, solidities, labels = np.array(
-            Parallel(n_jobs=6)(delayed(props_of_keys)(prop, prop_keys) 
-                for prop in P
-            )
-        ).T
-        del P
-    
-        MITh = threshold_otsu(mean_ints)
-    
-        minSolidity = 0.8
-    
-        passed = np.logical_and.reduce((
-            np.greater(mean_ints, MITh),
-            np.logical_and(areas > minArea, areas < maxArea),
-            np.greater(solidities, minSolidity)
-        ))
-    
-        # set failed mask label to zero
-        foregroundMask *= np.isin(foregroundMask, labels[passed])
-    
-        np.greater(foregroundMask, 0, out=foregroundMask)
-        foregroundMask = label(foregroundMask, connectivity=1).astype(np.int32)
-
-    return foregroundMask
-
-def bwmorph(mask,radius):
-    mask = np.array(mask,dtype=np.uint8)
-    #labels = label(mask)
-    background = nucleiMask == 0
-    distances, (i, j) = distance_transform_edt(background, return_indices=True)
-    cellMask = nucleiMask.copy()
-    finalmask = background & (distances <= radius)
-    cellMask[finalmask] = nucleiMask[i[finalmask], j[finalmask]]
-
-#    imshowpair(cellMask,mask)
-    return cellMask
-#    imshow(fg)
-#    fg = cv2.dilate(mask,ndimage.generate_binary_structure(2, 2))
-#    bg = 1-fg-mask
-#    imshowpair(bg,mask)
-
-def S3CytoplasmSegmentation(nucleiMask,cyto,mask,cytoMethod='distanceTransform',radius = 5):
-    mask = (nucleiMask + resize(mask,(nucleiMask.shape[0],nucleiMask.shape[1]),order=0))>0
-    gdist = distance_transform_edt(1-(nucleiMask>0))
-    if cytoMethod == 'distanceTransform':
-        mask = np.array(mask,dtype=np.uint32)
-        markers= nucleiMask
-    elif cytoMethod == 'hybrid':
-        cytoBlur = gaussian(cyto,2)
-        c1 = uniform_filter(cytoBlur, 3, mode='reflect')
-        c2 = uniform_filter(cytoBlur*cytoBlur, 3, mode='reflect')
-        grad = np.sqrt(c2 - c1*c1)*np.sqrt(9./8)
-        grad[np.isnan(grad)]=0
-        gdist= np.sqrt(np.square(grad) + 0.000001*np.amax(grad)/np.amax(gdist)*np.square(gdist))
-        bg = binary_erosion(np.invert(mask),morphology.selem.disk(radius, np.uint8))
-        markers=nucleiMask.copy()
-        markers[bg==1] = np.amax(nucleiMask)+1
-        markers = label(markers>0,connectivity=1)
-        mask = np.ones(nucleiMask.shape)
-        del bg
-    elif cytoMethod == 'ring':
-#        mask =np.array(bwmorph(nucleiMask,radius)*mask,dtype=np.uint32)>0
-        mask =np.array(bwmorph(nucleiMask,radius),dtype=np.uint32)>0
-        markers= nucleiMask
-    
-    cellMask  =clear_border(watershed(gdist,markers,watershed_line=True))
-    del gdist, markers, cyto
-    cellMask = np.array(cellMask*mask,dtype=np.uint32)
-	
-    finalCellMask = np.zeros(cellMask.shape,dtype=np.uint32)
-    P = regionprops(label(cellMask>0,connectivity=1),nucleiMask>0,cache=False)
-    count=0
-    for props in P:
-         if props.max_intensity>0 :
-            count += 1
-            yi = props.coords[:, 0]
-            xi = props.coords[:, 1]
-            finalCellMask[yi, xi] = count
-    nucleiMask = np.array(nucleiMask>0,dtype=np.uint32)
-    nucleiMask = finalCellMask*nucleiMask
-    cytoplasmMask = np.subtract(finalCellMask,nucleiMask)
-    return cytoplasmMask,nucleiMask,finalCellMask
-    
-def exportMasks(mask,image,outputPath,filePrefix,fileName,commit,metadata_args,saveFig=True,saveMasks = True):
-    outputPath =outputPath + os.path.sep + filePrefix
-    if not os.path.exists(outputPath):
-        os.makedirs(outputPath)
-    previewPath = outputPath + os.path.sep + 'qc'        
-    if not os.path.exists(previewPath):
-        os.makedirs(previewPath)
-   
-    if saveMasks ==True:
-        save_pyramid(
-            mask,
-            outputPath + os.path.sep + fileName + '.ome.tif',
-            channel_names=fileName,
-            is_mask=True,
-            **metadata_args
-        )     
-    if saveFig== True:
-        mask=np.uint8(mask>0)
-        edges = find_boundaries(mask,mode = 'outer')
-        stacked_img=np.stack((np.uint16(edges)*np.amax(image),image),axis=0)
-        save_pyramid(
-            stacked_img,
-            previewPath + os.path.sep + fileName + 'Outlines.ome.tif',
-            channel_names=[f'{fileName} outlines', 'Segmentation image'],
-            is_mask=False,
-            **metadata_args
-        )
-        
-def S3punctaDetection(spotChan,mask,sigma,SD):
-    Ilog = -gaussian_laplace(np.float32(spotChan),sigma)
-    tissueMask = spotChan >0
-    fgm=peak_local_max(Ilog, indices=False,footprint=np.ones((3, 3)))*tissueMask
-    test=Ilog[fgm==1]
-    med = np.median(test)
-    mad = np.median(np.absolute(test - med))
-    thresh = med + 1.4826*SD*mad
-    return (Ilog>thresh)*fgm*(mask>0)
- 
-     
-
-if __name__ == '__main__':
-    parser=argparse.ArgumentParser()
-    parser.add_argument("--imagePath")
-    parser.add_argument("--contoursClassProbPath",default ='')
-    parser.add_argument("--nucleiClassProbPath",default ='')
-    parser.add_argument("--stackProbPath",default ='')
-    parser.add_argument("--outputPath")
-    parser.add_argument("--dearrayPath")
-    parser.add_argument("--maskPath")
-    parser.add_argument("--probMapChan",type = int, default = -1)
-    parser.add_argument("--mask",choices=['TMA', 'tissue','none'],default = 'tissue')
-    parser.add_argument("--crop",choices=['interactiveCrop','autoCrop','noCrop','dearray','plate'], default = 'noCrop')
-    parser.add_argument("--cytoMethod",choices=['hybrid','distanceTransform','bwdistanceTransform','ring'],default = 'distanceTransform')
-    parser.add_argument("--nucleiFilter",choices=['IntPM','LoG','Int','none'],default = 'IntPM')
-    parser.add_argument("--nucleiRegion",choices=['watershedContourDist','watershedContourInt','watershedBWDist','dilation','localThreshold','localMax','bypass','pixellevel'], default = 'watershedContourInt')
-    parser.add_argument("--pixelThreshold",type = float, default = -1)
-    parser.add_argument("--segmentCytoplasm",choices = ['segmentCytoplasm','ignoreCytoplasm'],default = 'ignoreCytoplasm')
-    parser.add_argument("--cytoDilation",type = int, default = 5)
-    parser.add_argument("--logSigma",type = int, nargs = '+', default = [3, 60])
-    parser.add_argument("--CytoMaskChan",type=int, nargs = '+', default=[2])
-    parser.add_argument("--pixelMaskChan",type=int, nargs = '+', default=[2])
-    parser.add_argument("--TissueMaskChan",type=int, nargs = '+', default=0)
-    parser.add_argument("--detectPuncta",type=int, nargs = '+', default=[0])
-    parser.add_argument("--punctaSigma", nargs = '+', type=float, default=[0])
-    parser.add_argument("--punctaSD", nargs = '+', type=float, default=[4])
-    parser.add_argument("--saveMask",action='store_false')
-    parser.add_argument("--saveFig",action='store_false')
-    args = parser.parse_args()
-    
-    imagePath = args.imagePath
-    outputPath = args.outputPath
-    nucleiClassProbPath = args.nucleiClassProbPath
-    contoursClassProbPath = args.contoursClassProbPath
-    stackProbPath = args.stackProbPath
-    maskPath = args.maskPath
-    
-    commit = '1.3.11'#subprocess.check_output(['git', 'describe', '--tags']).decode('ascii').strip()
-    metadata = getMetadata(imagePath,commit)
-    
-    fileName = os.path.basename(imagePath)
-    filePrefix = fileName[0:fileName.index('.')]
- 
-    # convert 1-based indexing to 0-based indexing
-    CytoMaskChan = args.CytoMaskChan
-    CytoMaskChan[:] = [number - 1 for number in CytoMaskChan]
-    pixelMaskChan = args.pixelMaskChan
-    pixelMaskChan[:] = [number - 1 for number in pixelMaskChan]
- 
-     
-    if not os.path.exists(outputPath):
-        os.makedirs(outputPath)
-        
-    
-    # get channel used for nuclei segmentation
-
-    if len(contoursClassProbPath)>0:
-        legacyMode = 1
-        probPrefix = os.path.basename(contoursClassProbPath)
-        nucMaskChan = int(probPrefix.split('ContoursPM_')[1].split('.')[0])
-    elif len(stackProbPath)>0:
-        legacyMode = 0
-        probPrefix = os.path.basename(stackProbPath)
-    else:
-        print('NO PROBABILITY MAP PROVIDED')
-
-    if args.probMapChan==-1:
-        print('Using first channel by default!')
-        nucMaskChan = 0
-    else:
-        nucMaskChan = args.probMapChan
-        nucMaskChan = nucMaskChan -1 #convert 1-based indexing to 0-based indexing      
-
-    if args.TissueMaskChan==0:
-        TissueMaskChan = copy.copy(CytoMaskChan)
-        TissueMaskChan.append(nucMaskChan)
-    else:
-        TissueMaskChan = args.TissueMaskChan[:]
-        TissueMaskChan[:] = [number - 1 for number in TissueMaskChan]#convert 1-based indexing to 0-based indexing        
-        TissueMaskChan.append(nucMaskChan)
-
-	#crop images if needed
-    if args.crop == 'interactiveCrop':
-        nucleiCrop = tifffile.imread(imagePath,key = nucMaskChan)
-        r=cv2.selectROI(resize(nucleiCrop,(nucleiCrop.shape[0] // 30, nucleiCrop.shape[1] // 30)))
-        cv2.destroyWindow('select')
-        rect=np.transpose(r)*30
-        PMrect= [rect[1], rect[0], rect[3], rect[2]]
-        nucleiCrop = nucleiCrop[int(rect[1]):int(rect[1]+rect[3]), int(rect[0]):int(rect[0]+rect[2])]
-    elif args.crop == 'noCrop' or args.crop == 'dearray'  or args.crop == 'plate':
-        nucleiCrop = tifffile.imread(imagePath,key = nucMaskChan)
-        rect = [0, 0, nucleiCrop.shape[0], nucleiCrop.shape[1]]
-        PMrect= rect
-    elif args.crop == 'autoCrop':
-        nucleiCrop = tifffile.imread(imagePath,key = nucMaskChan)
-        rect = [np.round(nucleiCrop.shape[0]/3), np.round(nucleiCrop.shape[1]/3),np.round(nucleiCrop.shape[0]/3), np.round(nucleiCrop.shape[1]/3)]
-        PMrect= rect
-        nucleiCrop = nucleiCrop[int(rect[0]):int(rect[0]+rect[2]), int(rect[1]):int(rect[1]+rect[3])]
-        
-    if legacyMode ==1:    
-        nucleiProbMaps = tifffile.imread(nucleiClassProbPath,key=0)
-        nucleiPM = nucleiProbMaps[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-        nucleiProbMaps = tifffile.imread(contoursClassProbPath,key=0)
-        PMSize = nucleiProbMaps.shape
-        nucleiPM = np.dstack((nucleiPM,nucleiProbMaps[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]))
-    else:
-        nucleiProbMaps = imread(stackProbPath)
-        if len(nucleiProbMaps.shape)==2:
-            nucleiPM = nucleiProbMaps[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-        else:
-            nucleiPM = nucleiProbMaps[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3]),:]
-        PMSize = nucleiProbMaps.shape
-      
-    # mask the core/tissue
-    if args.crop == 'dearray':
-        TMAmask = tifffile.imread(maskPath)
-    elif args.crop =='plate':
-        TMAmask = np.ones(nucleiCrop.shape)
-		
-    else:
-        tissue = np.empty((len(TissueMaskChan),nucleiCrop.shape[0],nucleiCrop.shape[1]),dtype=np.uint16)
-        count=0
-        if args.crop == 'noCrop':
-            for iChan in TissueMaskChan:
-                tissueCrop =tifffile.imread(imagePath,key=iChan)
-                tissue_gauss = gaussian(tissueCrop,1)
-                #tissue_gauss[tissue_gauss==0]=np.nan
-                tissue[count,:,:] =np.log2(tissue_gauss+1)>threshold_otsu(np.log2(tissue_gauss+1))
-                count+=1
-        else:
-            for iChan in TissueMaskChan:
-                tissueCrop = tifffile.imread(imagePath,key=iChan)
-                tissue_gauss = gaussian(tissueCrop[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])],1)
-                tissue[count,:,:] =  np.log2(tissue_gauss+1)>threshold_otsu(np.log2(tissue_gauss+1))
-                count+=1
-        TMAmask = np.max(tissue,axis = 0)
-
-
-        del tissue_gauss, tissue
-      
-    # nuclei segmentation
-    if args.nucleiRegion == 'pixellevel':
-        pixelTissue = np.empty((len(pixelMaskChan),nucleiCrop.shape[0],nucleiCrop.shape[1]),dtype=np.uint16)
-        count=0
-        for iChan in pixelMaskChan:
-                pixelCrop = tifffile.imread(imagePath,key=iChan)
-                pixelTissue[count,:,:] = pixelCrop[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-                count+=1
-        nucleiMask = S3AreaSegmenter(nucleiPM, pixelTissue, TMAmask,args.pixelThreshold,filePrefix,outputPath)
-    elif args.nucleiRegion == 'bypass':    
-        nucleiMask = S3NucleiBypass(nucleiPM,nucleiCrop,args.logSigma,TMAmask,args.nucleiFilter,args.nucleiRegion)
-    else:
-        nucleiMask = S3NucleiSegmentationWatershed(nucleiPM,nucleiCrop,args.logSigma,TMAmask,args.nucleiFilter,args.nucleiRegion)
-    del nucleiPM
-    # cytoplasm segmentation
-    if args.segmentCytoplasm == 'segmentCytoplasm':
-        count =0
-        if args.crop == 'noCrop' or args.crop == 'dearray' or args.crop == 'plate':
-            cyto=np.empty((len(CytoMaskChan),nucleiCrop.shape[0],nucleiCrop.shape[1]),dtype=np.uint16)    
-            for iChan in CytoMaskChan:
-                cyto[count,:,:] =  tifffile.imread(imagePath, key=iChan)
-                count+=1
-        elif args.crop =='autoCrop':
-            cyto=np.empty((len(CytoMaskChan),int(rect[2]),int(rect[3])),dtype=np.int16)
-            for iChan in CytoMaskChan:
-                cytoFull= tifffile.imread(imagePath, key=iChan)
-                cyto[count,:,:] = cytoFull[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-                count+=1                
-        else:
-            cyto=np.empty((len(CytoMaskChan),rect[3],rect[2]),dtype=np.int16)
-            for iChan in CytoMaskChan:
-                cytoFull= tifffile.imread(imagePath, key=iChan)
-                cyto[count,:,:] = cytoFull[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-                count+=1
-        cyto = np.amax(cyto,axis=0)
-        cytoplasmMask,nucleiMaskTemp,cellMask = S3CytoplasmSegmentation(nucleiMask,cyto,TMAmask,args.cytoMethod,args.cytoDilation)
-        exportMasks(nucleiMaskTemp,nucleiCrop,outputPath,filePrefix,'nuclei',commit,metadata,args.saveFig,args.saveMask)
-        exportMasks(cytoplasmMask,cyto,outputPath,filePrefix,'cyto',commit,metadata,args.saveFig,args.saveMask)
-        exportMasks(cellMask,cyto,outputPath,filePrefix,'cell',commit,metadata,args.saveFig,args.saveMask)
-  
-        cytoplasmMask,nucleiMaskTemp,cellMask = S3CytoplasmSegmentation(nucleiMask,cyto,TMAmask,'ring',args.cytoDilation)
-        exportMasks(nucleiMaskTemp,nucleiCrop,outputPath,filePrefix,'nucleiRing',commit,metadata,args.saveFig,args.saveMask)
-        exportMasks(cytoplasmMask,cyto,outputPath,filePrefix,'cytoRing',commit,metadata,args.saveFig,args.saveMask)
-        exportMasks(cellMask,cyto,outputPath,filePrefix,'cellRing',commit,metadata,args.saveFig,args.saveMask)
-        
-    elif args.segmentCytoplasm == 'ignoreCytoplasm':
-        exportMasks(nucleiMask,nucleiCrop,outputPath,filePrefix,'nuclei',commit,metadata)
-        cellMask = nucleiMask
-        exportMasks(nucleiMask,nucleiCrop,outputPath,filePrefix,'cell',commit,metadata)
-        cytoplasmMask = nucleiMask
-        
-    detectPuncta = args.detectPuncta
-    if (np.min(detectPuncta)>0):
-        detectPuncta[:] = [number - 1 for number in detectPuncta] #convert 1-based indexing to 0-based indexing    
-        if len(detectPuncta) != len(args.punctaSigma):
-            args.punctaSigma = args.punctaSigma[0] * np.ones(len(detectPuncta))
- 
-  
-        if len(detectPuncta) != len(args.punctaSD):
-            args.punctaSD = args.punctaSD[0] * np.ones(len(detectPuncta))
-  
-        counter=0
-        for iPunctaChan in detectPuncta:
-            punctaChan = tifffile.imread(imagePath,key = iPunctaChan)
-            punctaChan = punctaChan[int(PMrect[0]):int(PMrect[0]+PMrect[2]), int(PMrect[1]):int(PMrect[1]+PMrect[3])]
-            spots=S3punctaDetection(punctaChan,cellMask,args.punctaSigma[counter],args.punctaSD[counter])
-            cellspotmask = nucleiMask
-            P = regionprops(cellspotmask,intensity_image = spots ,cache=False)
-            numSpots = []
-            for prop in P:
-                numSpots.append(np.uint16(np.round(prop.mean_intensity * prop.area)))
-            np.savetxt(outputPath + os.path.sep + 'numSpots_chan' + str(iPunctaChan+1) +'.csv',(np.transpose(np.asarray(numSpots))),fmt='%10.5f')    
-            edges = 1-(cellMask>0)
-            stacked_img=np.stack((np.uint16((spots+edges)>0)*np.amax(punctaChan),punctaChan),axis=0)
-             
-            
-            outputPathPuncta = outputPath + os.path.sep + filePrefix + os.path.sep + 'punctaChan'+str(iPunctaChan+1) + 'Outlines.ome.tif'
-            
-            # metadata_args = dict(
-            #     pixel_sizes=(metadata.physical_size_y, metadata.physical_size_x),
-            #     pixel_size_units=('µm', 'µm'),
-            #     software= 's3segmenter v' + commit
-            #     )
-            save_pyramid(
-                stacked_img,
-                outputPathPuncta,
-                channel_names=['puncta outlines', 'image channel'],
-                is_mask=False,
-                **metadata
-                )     
-            
-            counter=counter+1    
-
--- a/macros.xml	Fri Mar 11 23:37:49 2022 +0000
+++ b/macros.xml	Fri Sep 16 20:05:54 2022 +0000
@@ -2,25 +2,36 @@
 <macros>
     <xml name="requirements">
         <requirements>
-            <container type="docker">labsyspharm/s3segmenter:@VERSION@</container>
+            <!--
             <requirement type="package" version="3.7">python</requirement>
             <requirement type="package">scikit-learn</requirement>
             <requirement version="0.14.2" type="package">scikit-image</requirement>
             <requirement type="package">matplotlib</requirement>
             <requirement version="2021.6.6" type="package">tifffile</requirement>
             <requirement type="package">opencv</requirement>
-            <!-- <requirement type="package">ome_types</requirement> -->
+            -->  
+            <container type="docker">labsyspharm/s3segmenter:@TOOL_VERSION@</container>
         </requirements>
     </xml>
 
-    <xml name="version_cmd">
-        <version_command>echo @VERSION@</version_command>
-    </xml>
     <xml name="citations">
         <citations>
         </citations>
     </xml>
 
-    <token name="@VERSION@">1.3.12</token>
-    <token name="@CMD_BEGIN@">python3 $__tool_directory__/S3segmenter.py</token>
+    <token name="@TOOL_VERSION@">1.3.12</token>
+    <token name="@VERSION_SUFFIX@">0</token>
+    <token name="@PROFILE@">19.01</token>
+    <token name="@CMD_BEGIN@"><![CDATA[
+        S3SEG_CMD="" &&
+        if [ -f "/app/S3segmenter.py" ]; then
+            export S3SEG_CMD="python /app/S3segmenter.py";
+            export PYTHONPATH="/app";
+        else
+            export S3SEG_CMD="S3segmenter.py";
+        fi &&
+    ]]></token>
+    <xml name="version_cmd">
+        <version_command>@CMD_BEGIN@ $S3SEG_CMD --help</version_command>
+    </xml>
 </macros>
--- a/rowit.py	Fri Mar 11 23:37:49 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-import numpy as np
-from skimage.util import view_as_windows, montage
-
-
-class WindowView(object):
-
-    def __init__(
-        self, img_shape, block_size, overlap_size
-    ):
-        self.img_shape = img_shape
-        self.block_size = block_size
-        self.overlap_size = overlap_size
-
-        self.step_size = block_size - overlap_size
-
-    def window_view_list(self, img, pad_mode='constant'):
-        half = int(self.overlap_size / 2)
-        img = np.pad(img, (
-            (half, self.padded_shape[0] - self.img_shape[0] - half), 
-            (half, self.padded_shape[1] - self.img_shape[1] - half),
-        ), mode=pad_mode)
-        
-        return self._window_view_list(img)
-    
-    def padding_mask(self):
-        half = int(self.overlap_size / 2)
-        padding_mask = np.ones(self.img_shape, dtype=np.bool)
-        padding_mask = np.pad(padding_mask, (
-            (half, self.padded_shape[0] - self.img_shape[0] - half), 
-            (half, self.padded_shape[1] - self.img_shape[1] - half),
-        ), mode='constant', constant_values=0)
-        return self._window_view_list(padding_mask)
-
-    def reconstruct(self, img_window_view_list):
-        grid_shape = self.window_view_shape[:2]
-
-        start = int(self.overlap_size / 2)
-        end = int(self.block_size - start)
-
-        img_window_view_list = img_window_view_list[..., start:end, start:end]
-
-        return montage(
-            img_window_view_list, grid_shape=grid_shape
-        )[:self.img_shape[0], :self.img_shape[1]]
-        
-    @property
-    def padded_shape(self):
-        padded_shape = np.array(self.img_shape) + self.overlap_size
-        n = np.ceil((padded_shape - self.block_size) / self.step_size)
-        padded_shape = (self.block_size + (n * self.step_size)).astype(np.int)
-        return tuple(padded_shape)
-
-    @property 
-    def window_view_shape(self):
-        return view_as_windows(
-            np.empty(self.padded_shape), 
-            self.block_size, self.step_size
-        ).shape
-
-    def _window_view_list(self, img):
-        return (
-            view_as_windows(img, self.block_size, self.step_size)
-                .reshape(-1, self.block_size, self.block_size)
-        )
-
-def crop_with_padding_mask(img, padding_mask, return_mask=False):
-    if np.all(padding_mask == 1):
-        return (img, padding_mask) if return_mask else img
-    (r_s, r_e), (c_s, c_e) = [
-        (i.min(), i.max() + 1)
-        for i in np.where(padding_mask == 1)
-    ]
-    padded = np.zeros_like(img)
-    img = img[r_s:r_e, c_s:c_e]
-    padded[r_s:r_e, c_s:c_e] = 1
-    return (img, padded) if return_mask else img
\ No newline at end of file
--- a/s3segmenter.xml	Fri Mar 11 23:37:49 2022 +0000
+++ b/s3segmenter.xml	Fri Sep 16 20:05:54 2022 +0000
@@ -1,49 +1,49 @@
-<tool id="s3segmenter" name="s3segmenter" version="@VERSION@.0" profile="17.09">
-    <description>S3segmenter is a Python-based set of functions that generates single cell (nuclei and cytoplasm) label masks.</description>
+<tool id="s3segmenter" name="s3segmenter" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@">
+    <description>single cell (nuclei and cytoplasm) label masks.</description>
     <macros>
         <import>macros.xml</import>
     </macros>
  
     <expand macro="requirements"/>
-    @VERSION_CMD@
+    <expand macro="version_cmd"/>
 
     <command detect_errors="exit_code"><![CDATA[
 
-        ln -s '${imagePath}' ./image.tif;
+        ln -s '${imagePath}' './image.tif' &&
 
         #if $contoursClassProbPath
-        ln -s ${contoursClassProbPath} ./ContoursPM.tif;
+        ln -s '${contoursClassProbPath}' './ContoursPM.tif' &&
         #end if
 
         #if $nucleiClassProbPath
-        ln -s ${nucleiClassProbPath} ./NucleiPM.tif;
+        ln -s '${nucleiClassProbPath}' './NucleiPM.tif' &&
         #end if
 
         #if $stackProbPath
-        ln -s ${stackProbPath} ./Probabilities.tif;
+        ln -s '${stackProbPath}' './Probabilities.tif' &&
         #end if
 
 
-        @CMD_BEGIN@ 
-        --imagePath ./image.tif
+        @CMD_BEGIN@ \$S3SEG_CMD 
+        --imagePath './image.tif'
 
         #if $contoursClassProbPath
-        --contoursClassProbPath ./ContoursPM.tif
+        --contoursClassProbPath './ContoursPM.tif'
         #end if
 
         #if $nucleiClassProbPath
-        --nucleiClassProbPath ./NucleiPM.tif
+        --nucleiClassProbPath './NucleiPM.tif'
         #end if
 
         #if $stackProbPath
-        --stackProbPath ./Probabilities.tif
+        --stackProbPath './Probabilities.tif'
         #end if
 
         --probMapChan $probMapChan
         --crop $crop_select.crop
         
         #if $crop_select.crop == "dearray"
-          --maskPath $crop_select.maskPath
+          --maskPath '$crop_select.maskPath'
         #end if
 
         --cytoMethod $cytoMethod
@@ -63,16 +63,9 @@
         --detectPuncta $adv.detectPuncta
         --punctaSigma $adv.punctaSigma
         --punctaSD $adv.punctaSD
-
-        #if not $saveMask
-        --saveMask
-        #end if
-
-        #if not $saveFig
-        --saveFig
-        #end if
-
-        --outputPath .
+        $saveMask
+        $saveFig
+        --outputPath '.'
     ]]></command>
 
 
@@ -94,6 +87,9 @@
             <when value="dearray">
                 <param name="maskPath" type="data" format="tiff" label="TMA Mask File"/>
             </when>
+            <when value="noCrop" />
+            <when value="autoCrop" />
+            <when value="plate" />
         </conditional>
 
         <param name="cytoMethod" type="select" label="Cyto Method">
@@ -121,17 +117,24 @@
                 <option value="pixellevel">pixellevel</option>
             </param>
             <when value="pixellevel">
-                <param name="pixelThreshold" type="float" value="-1.0" Label="Pixel Threshold"/>
-                <param name="pixelMaskChan" type="text" value="2" Label="Pixel Mask Channel"/>
+                <param name="pixelThreshold" type="float" value="-1.0" label="Pixel Threshold"/>
+                <param name="pixelMaskChan" type="text" value="2" label="Pixel Mask Channel"/>
             </when>
+             <when value="watershedContourDist"/>
+             <when value="watershedContourInt"/>
+             <when value="watershedBWDist"/>
+             <when value="dilation"/>
+             <when value="localThreshold"/>
+             <when value="localMax"/>
+             <when value="bypass"/>
         </conditional>
 
         <param name="segmentCytoplasm" type="select" label="Segment Cytoplasm">
             <option value="segmentCytoplasm">segmentCytoplasm</option>
             <option selected="true" value="ignoreCytoplasm">ignoreCytoplasm</option>
         </param>
-        <param name="saveMask" type="boolean" checked="true" label="Save Mask"/>
-        <param name="saveFig" type="boolean" checked="true" label="Save Figure"/>
+        <param argument="saveMask" type="boolean" checked="true" truevalue="--saveMask" falsevalue="" label="Save Mask"/>
+        <param argument="saveFig" type="boolean" checked="true" truevalue="--saveFig" falsevalue="" label="Save Figure"/>
 
         <section name="adv" title="Advanced Options" expanded="false">
             <param name="cytoDilation" type="integer" value="5" label="Cyto Dilation"/>
@@ -161,7 +164,29 @@
             <filter>saveFig is True</filter>
         </data>
     </outputs>
+    <tests>
+        <test>
+            <param name="imagePath" value="test.ome.tiff" />
+            <param name="stackProbPath" value="stack_probabilities.tiff" />
+            <param name="punctaSD" value="4" />
+            <output name="cell_mask" ftype="tiff">
+                <assert_contents>
+                    <has_size value="6600000" delta="1000000" />
+                </assert_contents>
+            </output>
+            <output name="nuclei_mask" ftype="tiff">
+                <assert_contents>
+                    <has_size value="6600000" delta="1000000" />
+                </assert_contents>
+            </output>
+        </test>
+    </tests>
     <help><![CDATA[
+-------------------        
+S3segmenter
+-------------------        
+**S3segmenter** is a Python-based set of functions that generates single cell (nuclei and cytoplasm) label masks.
+
 Inputs are:
 
 1. an .ome.tif (preferably flat field corrected)
@@ -172,7 +197,6 @@
 To segment cytoplasm, the nuclei are in turn used for a marker-controlled watershed segmentation constrained by a cytoplasmic marker such as B-catenin. The channel number of this marker must be specified. A 3-pixel annulus around each nucleus will also be used to segment cytoplasm.
 
 The source repository can be found here: https://github.com/HMS-IDAC/S3segmenter
-OHSU Wrapper Repo: https://github.com/ohsu-comp-bio/S3segmenter
     ]]></help>
     <expand macro="citations" />
 </tool>
--- a/save_tifffile_pyramid.py	Fri Mar 11 23:37:49 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,114 +0,0 @@
-import numpy as np
-import tifffile
-import skimage.transform
-
-PHYSICAL_SIZE_UNIT = ['Ym', 'Zm', 'Em', 'Pm', 'Tm', 'Gm', 'Mm', 'km', 'hm', 'dam', 'm', 'dm', 'cm', 'mm', 'µm', 'nm', 'pm', 'fm', 'am', 'zm', 'ym', 'Å', 'thou', 'li', 'in', 'ft', 'yd', 'mi', 'ua', 'ly', 'pc', 'pt', 'pixel', 'reference frame']
-
-def normalize_image_shape(img):
-    assert img.ndim in (2, 3), (
-        'image must be 2D (Y, X) or 3D (C, Y, X)'
-    )
-    if img.ndim == 2:
-        img = img.reshape(1, *img.shape)
-    assert np.argmin(img.shape) == 0, (
-        '3D image must be in (C, Y, X) order'
-    )
-    return img
-
-def save_pyramid(
-    out_img, output_path,
-    pixel_sizes=(1, 1),
-    pixel_size_units=('µm', 'µm'),
-    channel_names=None,
-    software=None,
-    is_mask=False
-):
-    assert '.ome.tif' in str(output_path)
-    assert len(pixel_sizes) == len(pixel_size_units) == 2
-    assert out_img.ndim in (2, 3), (
-        'image must be either 2D (Y, X) or 3D (C, Y, X)'
-    )
-    
-    img_shape_ori = out_img.shape
-    out_img = normalize_image_shape(out_img)
-    img_shape = out_img.shape
-
-    size_x, size_y = np.array(pixel_sizes, dtype=float)
-    unit_x, unit_y = pixel_size_units
-
-    assert (unit_x in PHYSICAL_SIZE_UNIT) & (unit_y in PHYSICAL_SIZE_UNIT), (
-        f'pixel_size_units must be a tuple of the followings: '
-        f'{", ".join(PHYSICAL_SIZE_UNIT)}'
-    )
-
-    n_channels = img_shape[0]
-    if channel_names == None:
-        channel_names = [f'Channel {i}' for i in range(n_channels)]
-    else:
-        if type(channel_names) == str:
-            channel_names = [channel_names]
-        n_channel_names = len(channel_names)
-        assert n_channel_names == n_channels, (
-            f'number of channel_names ({n_channel_names}) must match '
-            f'number of channels ({n_channels})'
-        )
-    
-    if software == None:
-        software = ''
-        
-    metadata = {
-        'Creator': software,
-        'Pixels': {
-            'PhysicalSizeX': size_x,
-            'PhysicalSizeXUnit': unit_x,
-            'PhysicalSizeY': size_y,
-            'PhysicalSizeYUnit': unit_y,
-        },
-        'Channel': {'Name': channel_names},
-        
-    }
-
-    max_size = np.max(img_shape)
-    subifds = np.ceil(np.log2(max_size / 1024)).astype(int)
-    
-    # use optimal tile size for disk space
-    tile_size = 16*np.ceil(
-        np.array(img_shape[1:]) / (2**subifds) / 16
-    ).astype(int)
-    options = {
-        'tile': tuple(tile_size)
-    }
-
-    with tifffile.TiffWriter(output_path, bigtiff=True) as tiff_out:
-        tiff_out.write(
-            data=out_img,
-            metadata=metadata,
-            software=software,
-            subifds=subifds,
-            **options
-        )
-        for i in range(subifds):
-            if i == 0:
-                down_2x_img = downsize_img_channels(out_img, is_mask=is_mask)
-            else:
-                down_2x_img = downsize_img_channels(down_2x_img, is_mask=is_mask)
-            tiff_out.write(
-                data=down_2x_img,
-                subfiletype=1,
-                **options
-            )
-
-    out_img = out_img.reshape(img_shape_ori)
-    return
-
-def downsize_channel(img, is_mask):
-    if is_mask:
-        return img[::2, ::2]
-    else:
-        return skimage.transform.downscale_local_mean(img, (2, 2)).astype(img.dtype)
-
-def downsize_img_channels(img, is_mask):
-    return np.array([
-        downsize_channel(c, is_mask=is_mask)
-        for c in img
-    ])
Binary file test-data/stack_probabilities.tiff has changed
Binary file test-data/test.ome.tiff has changed