Mercurial > repos > perssond > unmicst
view unmicst.xml @ 0:6bec4fef6b2e draft
"planemo upload for repository https://github.com/ohsu-comp-bio/unmicst commit 73e4cae15f2d7cdc86719e77470eb00af4b6ebb7-dirty"
author | perssond |
---|---|
date | Fri, 12 Mar 2021 00:17:29 +0000 |
parents | |
children | 74fe58ff55a5 |
line wrap: on
line source
<tool id="unmicst" name="UnMicst" version="@VERSION@.1" profile="17.09"> <description>UNet Model for Identifying Cells and Segmenting Tissue</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> @VERSION_CMD@ <command detect_errors="exit_code"><![CDATA[ #set $typeCorrected = str($image.name).replace('.ome.tiff','').replace('.ome.tif','').replace('.tiff','').replace('.tif','')+'.ome.tif' ln -s $image '$typeCorrected'; @CMD_BEGIN@ '$typeCorrected' #if $stackoutput --stackOutput #end if --outputPath `pwd` --channel $channel --model $model --mean $mean --std $stdev --scalingFactor $scalingfactor; ## Move files to different files for from_work_dir differentiation #if $stackoutput mv *Probabilities*.tif Probabilities.tif; mv *Preview*.tif Preview.tif #else mv *ContoursPM*.tif ContoursPM.tif; mv *NucleiPM*.tif NucleiPM.tif #end if ]]></command> <inputs> <param name="image" type="data" format="tiff" label="Registered TIFF"/> <param name="model" type="select" label="Model"> <option value="nucleiDAPI">nucleiDAPI</option> <option value="mousenucleiDAPI">mousenucleiDAPI</option> <option value="CytoplasmIncell">CytoplasmIncell</option> <option value="CytoplasmZeissNikon">CytoplasmZeissNikon</option> </param> <param name="mean" type="float" value="-1" label="Mean (-1 for model default)"/> <param name="stdev" type="float" value="-1" label="Standard Deviation (-1 for model default)"/> <param name="channel" type="integer" value="0" label="Channel to perform inference on"/> <param name="stackoutput" type="boolean" label="Stack probability map outputs"/> <param name="scalingfactor" type="float" value="1.0" label="Factor to scale by"/> </inputs> <outputs> <data format="tiff" name="previews" from_work_dir="Preview.tif" label="${tool.name} on ${on_string}: Preview"> <filter>stackoutput</filter> </data> <data format="tiff" name="probabilities" from_work_dir="Probabilities.tif" label="${tool.name} on ${on_string}: Probabilities"> <filter>stackoutput</filter> </data> <data format="tiff" name="contours" from_work_dir="ContoursPM.tif" label="${tool.name} on ${on_string}: ContoursPM"> <filter>not stackoutput</filter> </data> <data format="tiff" name="nuclei" from_work_dir="NucleiPM.tif" label="${tool.name} on ${on_string}: NucleiPM"> <filter>not stackoutput</filter> </data> </outputs> <help><![CDATA[ UnMicst - UNet Model for Identifying Cells and Segmenting Tissue Image Preprocessing Images can be preprocessed by inferring nuclei contours via a pretrained UNet model. The model is trained on 3 classes : background, nuclei contours and nuclei centers. The resulting probability maps can then be loaded into any modular segmentation pipeline that may use (but not limited to) a marker controlled watershed algorithm. The only input file is: an .ome.tif or .tif (preferably flat field corrected, minimal saturated pixels, and in focus. The model is trained on images acquired at 20x with binning 2x2 or a pixel size of 0.65 microns/px. If your settings differ, you can upsample/downsample to some extent. Running as a Docker container The docker image is distributed through Dockerhub and includes UnMicst with all of its dependencies. Parallel images with and without gpu support are available. docker pull labsyspharm/unmicst:latest docker pull labsyspharm/unmicst:latest-gpu Instatiate a container and mount the input directory containing your image. docker run -it --runtime=nvidia -v /path/to/data:/data labsyspharm/unmicst:latest-gpu bash When using the CPU-only image, --runtime=nvidia can be omitted: docker run -it -v /path/to/data:/data labsyspharm/unmicst:latest bash UnMicst resides in the /app directory inside the container: root@0ea0cdc46c8f:/# python app/UnMicst.py /data/input/my.tif --outputPath /data/results Running in a Conda environment If Docker is not available on your system, you can run the tool locally by creating a Conda environment. Ensure conda is installed on your system, then clone the repo and use conda.yml to create the environment. git clone https://github.com/HMS-IDAC/UnMicst.git cd UnMicst conda env create -f conda.yml conda activate unmicst python UnMicst.py /path/to/input.tif --outputPath /path/to/results/directory References: S Saka, Y Wang, J Kishi, A Zhu, Y Zeng, W Xie, K Kirli, C Yapp, M Cicconet, BJ Beliveau, SW Lapan, S Yin, M Lin, E Boyde, PS Kaeser, G Pihan, GM Church, P Yin, Highly multiplexed in situ protein imaging with signal amplification by Immuno-SABER, Nat Biotechnology (accepted) OHSU Wrapper Repo: https://github.com/ohsu-comp-bio/UnMicst ]]></help> <expand macro="citations" /> </tool>