0
|
1 #!/usr/bin/env python3
|
|
2 import multiprocessing
|
|
3 import os
|
|
4 import time
|
|
5 from itertools import cycle
|
|
6 '''
|
|
7 functions for parallel processing of data chunks using worker function
|
|
8 '''
|
|
9
|
|
10
|
|
11 def run_multiple_pbs_jobs(cmds, status_files, qsub_params=""):
|
|
12 '''
|
|
13 Example of pbs_params:
|
|
14 -l walltime=1000:00:00,nodes=1:ppn=8,mem=15G
|
|
15 -l walltime=150:00:00,nodes=1:ppn=1
|
|
16
|
|
17 '''
|
|
18 jobs = []
|
|
19 status_function = []
|
|
20 status_command = []
|
|
21 for cmd, sf in zip(cmds, status_files):
|
|
22 jobs.append(pbs_send_job(cmd, sf, qsub_params))
|
|
23 for p in jobs:
|
|
24 p.join()
|
|
25 status_function.append(p.exitcode)
|
|
26 # collect pbs run status
|
|
27 for sf in status_files:
|
|
28 with open(sf) as f:
|
|
29 status_command.append(f.read().strip())
|
|
30 status = {'function': status_function, 'command': status_command}
|
|
31 return status
|
|
32
|
|
33
|
|
34 def pbs_send_job(cmd, status_file, qsub_params):
|
|
35 ''' send job to pbs cluster, require status file'''
|
|
36 p = multiprocessing.Process(target=pbs_run,
|
|
37 args=(cmd, status_file, qsub_params))
|
|
38 p.start()
|
|
39 return p
|
|
40
|
|
41
|
|
42 def pbs_run(cmd, status_file, qsub_params):
|
|
43 '''
|
|
44 run shell command cmd on pbs cluster, wait for job to finish
|
|
45 and return status
|
|
46 '''
|
|
47 print(status_file)
|
|
48 error_file = status_file + ".e"
|
|
49 # test if writable
|
|
50 try:
|
|
51 f = open(status_file, 'w').close()
|
|
52 f = open(error_file, 'w').close()
|
|
53 except IOError:
|
|
54 print("cannot write to status files, make sure path exists")
|
|
55 raise IOError
|
|
56
|
|
57 if os.path.exists(status_file):
|
|
58 print("removing old status file")
|
|
59 os.remove(status_file)
|
|
60 cmd_full = ("echo '{cmd} && echo \"OK\" > {status_file} || echo \"ERROR\""
|
|
61 " > {status_file}' | qsub -e {err}"
|
|
62 " {qsub_params} ").format(cmd=cmd, status_file=status_file,
|
|
63 err=error_file,
|
|
64 qsub_params=qsub_params)
|
|
65 os.system(cmd_full)
|
|
66
|
|
67 while True:
|
|
68 if os.path.exists(status_file):
|
|
69 break
|
|
70 else:
|
|
71 time.sleep(3)
|
|
72 with open(status_file) as f:
|
|
73 status = f.read().strip()
|
|
74 return status
|
|
75
|
|
76
|
|
77 def spawn(f):
|
|
78 def fun(pipe, x):
|
|
79 pipe.send(f(x))
|
|
80 pipe.close()
|
|
81 return fun
|
|
82
|
|
83
|
|
84 def get_max_proc():
|
|
85 '''Number of cpu to ise in ether get from config.py is available or
|
|
86 from global PROC or from environment variable PRCO or set to system max'''
|
|
87 try:
|
|
88 from config import PROC as max_proc
|
|
89 except ImportError:
|
|
90 if "PROC" in globals():
|
|
91 max_proc = PROC
|
|
92 elif "PROC" in os.environ:
|
|
93 max_proc = int(os.environ["PROC"])
|
|
94
|
|
95 else:
|
|
96 max_proc = multiprocessing.cpu_count()
|
|
97 return max_proc
|
|
98
|
|
99
|
|
100 def parmap2(f, X, groups, ppn):
|
|
101 max_proc = get_max_proc()
|
|
102 print("running in parallel using ", max_proc, "cpu(s)")
|
|
103 process_pool = []
|
|
104 output = [None] * len(X)
|
|
105 # prepare processes
|
|
106 for x, index in zip(X, list(range(len(X)))):
|
|
107 # status:
|
|
108 # 0: waiting, 1: running, 2:collected
|
|
109 process_pool.append({
|
|
110 'status': 0,
|
|
111 'proc': None,
|
|
112 'pipe': None,
|
|
113 'index': index,
|
|
114 'group': groups[index],
|
|
115 'ppn': ppn[index]
|
|
116
|
|
117 })
|
|
118
|
|
119 # run processes
|
|
120 running = 0
|
|
121 finished = 0
|
|
122 sleep_time = 0.001
|
|
123 while True:
|
|
124 # count alive processes
|
|
125 if not sleep_time:
|
|
126 sleep_time = 0.001
|
|
127 for i in process_pool:
|
|
128 if i['status'] == 1 and not (i['proc'].exitcode is None):
|
|
129 sleep_time = 0.0
|
|
130 # was running now finished --> collect
|
|
131 i['status'] = 2
|
|
132 running -= 1
|
|
133 finished += 1
|
|
134 output[i['index']] = collect(i['proc'], i['pipe'])
|
|
135 del i['pipe']
|
|
136 del i['proc']
|
|
137 if i['status'] == 0 and running < max_proc:
|
|
138 # waiting and free --> run
|
|
139 # check if this group can be run
|
|
140 running_groups = [pp['group']
|
|
141 for pp in process_pool if pp['status'] == 1]
|
|
142 # check max load of concurent runs:
|
|
143 current_load = sum([pp['ppn']
|
|
144 for pp in process_pool if pp['status'] == 1])
|
|
145 cond1 = (i['ppn'] + current_load) <= 1
|
|
146 cond2 = not i['group'] in running_groups
|
|
147 if cond1 and cond2:
|
|
148 sleep_time = 0.0
|
|
149 try:
|
|
150 i['pipe'] = multiprocessing.Pipe()
|
|
151 except OSError as e:
|
|
152 print('exception occured:',e)
|
|
153 continue
|
|
154 i['proc'] = multiprocessing.Process(
|
|
155 target=spawn(f),
|
|
156 args=(i['pipe'][1], X[i['index']]),
|
|
157 name=str(i['index']))
|
|
158 i['proc'].start()
|
|
159 i['status'] = 1
|
|
160 running += 1
|
|
161 if finished == len(process_pool):
|
|
162 break
|
|
163 if sleep_time:
|
|
164 # sleep only if nothing changed in the last cycle
|
|
165 time.sleep(sleep_time)
|
|
166 # sleep time gradually increase to 1 sec
|
|
167 sleep_time = min(2 * sleep_time, 1)
|
|
168 return output
|
|
169
|
|
170
|
|
171 def print_status(pp):
|
|
172 states = ['waiting', 'running', 'collected']
|
|
173 print("___________________________________")
|
|
174 print("jobid status group ppn exitcode")
|
|
175 print("===================================")
|
|
176 for i in pp:
|
|
177 print(
|
|
178 i['index'], " ",
|
|
179 states[i['status']], " ",
|
|
180 i['group'], " ",
|
|
181 i['ppn'], " ",
|
|
182 i['proc'].exitcode
|
|
183 )
|
|
184
|
|
185
|
|
186 def collect(pf, pp):
|
|
187 if pf.pid and not pf.exitcode and not pf.is_alive():
|
|
188 returnvalue = pp[0].recv()
|
|
189 pf.join()
|
|
190 pp[0].close()
|
|
191 pp[1].close()
|
|
192 return returnvalue
|
|
193 elif pf.exitcode:
|
|
194 print("job finished with exit code {}".format(pf.exitcode))
|
|
195 pf.join()
|
|
196 pp[0].close()
|
|
197 pp[1].close()
|
|
198 return None
|
|
199 # return None
|
|
200 else:
|
|
201 raise Exception('not collected')
|
|
202
|
|
203
|
|
204 def parmap(f, X):
|
|
205
|
|
206 max_proc = get_max_proc()
|
|
207
|
|
208 pipe = []
|
|
209 proc = []
|
|
210 returnvalue = {}
|
|
211
|
|
212 for x, index in zip(X, list(range(len(X)))):
|
|
213 pipe.append(multiprocessing.Pipe())
|
|
214 proc.append(multiprocessing.Process(target=spawn(f),
|
|
215 args=(pipe[-1][1], x), name=str(index)))
|
|
216 p = proc[-1]
|
|
217 # count alive processes
|
|
218 while True:
|
|
219 running = 0
|
|
220 for i in proc:
|
|
221 if i.is_alive():
|
|
222 running += 1
|
|
223 # print "running:"+str(running)
|
|
224 if running < max_proc:
|
|
225 break
|
|
226 else:
|
|
227 time.sleep(0.1)
|
|
228 p.start()
|
|
229 # print "process started:"+str(p.pid)
|
|
230 # check for finished
|
|
231
|
|
232 for pf, pp, index in zip(proc, pipe, range(len(pipe))):
|
|
233 if pf.pid and not pf.exitcode and not pf.is_alive() and (pf.name not in returnvalue):
|
|
234 pf.join()
|
|
235 returnvalue[str(pf.name)] = pp[0].recv()
|
|
236 pp[0].close()
|
|
237 pp[1].close()
|
|
238 # proc must be garbage collected - to free all file connection
|
|
239 del proc[index]
|
|
240 del pipe[index]
|
|
241
|
|
242 # collect the rest:
|
|
243 [pf.join() for pf in proc]
|
|
244 for pf, pp in zip(proc, pipe):
|
|
245 if pf.pid and not pf.exitcode and not pf.is_alive() and (pf.name not in returnvalue):
|
|
246 returnvalue[str(pf.name)] = pp[0].recv()
|
|
247 pp[0].close()
|
|
248 pp[1].close()
|
|
249 # convert to list in input correct order
|
|
250 returnvalue = [returnvalue[str(i)] for i in range(len(X))]
|
|
251 return returnvalue
|
|
252
|
|
253
|
|
254 def parallel2(command, *args, groups=None, ppn=None):
|
|
255 ''' same as parallel but groups are used to identifie mutually
|
|
256 exclusive jobs, jobs with the same goup id are never run together
|
|
257 ppn params is 'load' of the job - sum of loads cannot exceed 1
|
|
258 '''
|
|
259 # check args, expand if necessary
|
|
260 args = list(args)
|
|
261 N = [len(i) for i in args] # lengths of lists
|
|
262 Mx = max(N)
|
|
263 if len(set(N)) == 1:
|
|
264 # all good
|
|
265 pass
|
|
266 elif set(N) == set([1, Mx]):
|
|
267 # expand args of length 1
|
|
268 for i in range(len(args)):
|
|
269 if len(args[i]) == 1:
|
|
270 args[i] = args[i] * Mx
|
|
271 else:
|
|
272 raise ValueError
|
|
273 if not groups:
|
|
274 groups = range(Mx)
|
|
275 elif len(groups) != Mx:
|
|
276 print("length of groups must be same as number of job or None")
|
|
277 raise ValueError
|
|
278
|
|
279 if not ppn:
|
|
280 ppn = [0] * Mx
|
|
281 elif len(ppn) != Mx:
|
|
282 print("length of ppn must be same as number of job or None")
|
|
283 raise ValueError
|
|
284 elif max(ppn) > 1 and min(ppn):
|
|
285 print("ppn values must be in 0 - 1 range")
|
|
286 raise ValueError
|
|
287 # convert argument to suitable format - 'transpose'
|
|
288 argsTuples = list(zip(*args))
|
|
289 args = [list(i) for i in argsTuples]
|
|
290
|
|
291 # multiprocessing.Pool()
|
|
292
|
|
293 def command_star(args):
|
|
294 return(command(*args))
|
|
295
|
|
296 x = parmap2(command_star, argsTuples, groups, ppn)
|
|
297 return x
|
|
298
|
|
299
|
|
300 def parallel(command, *args):
|
|
301 ''' Execute command in parallel using multiprocessing
|
|
302 command is the function to be executed
|
|
303 args is list of list of arguments
|
|
304 execution is :
|
|
305 command(args[0][0],args[1][0],args[2][0],args[3][0],....)
|
|
306 command(args[0][1],args[1][1],args[2][1],args[3][1],....)
|
|
307 command(args[0][2],args[1][2],args[2][2],args[3][2],....)
|
|
308 ...
|
|
309 output of command is returned as list
|
|
310 '''
|
|
311 # check args, expand if necessary
|
|
312 args = list(args)
|
|
313 N = [len(i) for i in args] # lengths of lists
|
|
314 Mx = max(N)
|
|
315 if len(set(N)) == 1:
|
|
316 # all good
|
|
317 pass
|
|
318 elif set(N) == set([1, Mx]):
|
|
319 # expand args of length 1
|
|
320 for i in range(len(args)):
|
|
321 if len(args[i]) == 1:
|
|
322 args[i] = args[i] * Mx
|
|
323 else:
|
|
324 raise ValueError
|
|
325
|
|
326 # convert argument to suitable format - 'transpose'
|
|
327 argsTuples = list(zip(*args))
|
|
328 args = [list(i) for i in argsTuples]
|
|
329
|
|
330 multiprocessing.Pool()
|
|
331
|
|
332 def command_star(args):
|
|
333 return(command(*args))
|
|
334
|
|
335 x = parmap(command_star, argsTuples)
|
|
336 return x
|
|
337
|
|
338
|
|
339 def worker(*a):
|
|
340 x = 0
|
|
341 y = 0
|
|
342 for i in a:
|
|
343 if i == 1.1:
|
|
344 print("raising exception")
|
|
345 s = 1 / 0
|
|
346 y += i
|
|
347 for j in range(10):
|
|
348 x += i
|
|
349 for j in range(100000):
|
|
350 x = 1.0 / (float(j) + 1.0)
|
|
351 return(y)
|
|
352
|
|
353 # test
|
|
354 if __name__ == "__main__":
|
|
355 # x = parallel2(worker, [1], [2], [3], [4], [1], [1, 2, 3, 7, 10, 1.1, 20, 30, 40, 10, 30, 20, 40, 50, 50], [
|
|
356 # 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 4, 3, 2])
|
|
357
|
|
358 x = parallel2(
|
|
359 worker, [1], [2], [3], [4], [1],
|
|
360 [1, 2, 3, 7, 10, 1.2, 20, 30, 40, 10, 30, 20, 40, 50, 50],
|
|
361 [3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 4, 3, 2],
|
|
362 groups=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
|
|
363 ppn=[0.6, 0.6, 0.2, 0.6, 0.2, 0.2, 0.4,
|
|
364 0.1, 0.1, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1]
|
|
365 )
|
|
366 print(x)
|