Mercurial > repos > petr-novak > re_utils
comparison plot_comparative_clustering_summary.R @ 17:d14b68e9fd1d draft
Uploaded - new tools added
author | petr-novak |
---|---|
date | Wed, 28 Apr 2021 08:37:20 +0000 |
parents | |
children | 5a05925340b0 |
comparison
equal
deleted
inserted
replaced
16:5376e1c9adec | 17:d14b68e9fd1d |
---|---|
1 #!/usr/bin/env Rscript | |
2 library(optparse) | |
3 ## TODO - add scale to legend! | |
4 twenty_colors = c( | |
5 '#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#f58231', | |
6 '#911eb4', '#46f0f0', '#f032e6', '#bcf60c', '#fabebe', | |
7 '#008080', '#e6beff', '#9a6324', '#fffac8', '#800000', | |
8 '#aaffc3', '#808000', '#ffd8b1', '#000075', "#000000" | |
9 ) | |
10 | |
11 get_color = function(classification, size){ | |
12 ## 20 of unique colors, first is black | |
13 unique_colors = twenty_colors[1:opt$number_of_colors] | |
14 Ncol = length(unique_colors) | |
15 ## rest wil be grey: | |
16 grey_color = "#a9a9a9" | |
17 ## unique repeats without All | |
18 include = !classification %in% "All" | |
19 unique_repeats = names(c(sort(by(size[include], INDICES = classification[include], FUN = sum), decreasing = TRUE))) | |
20 color_table = unique_colors[1:min(Ncol,length(unique_repeats))] | |
21 names(color_table) = unique_repeats[1:min(Ncol,length(unique_repeats))] | |
22 color = rep(grey_color, length(classification)) | |
23 names(color) = classification | |
24 for (ac in names(color_table)){ | |
25 color[names(color) %in% ac] = color_table[ac] | |
26 } | |
27 return(color) | |
28 } | |
29 | |
30 | |
31 make_legend = function(color){ | |
32 ## simplify description: | |
33 names(color) = gsub(".+/","",names(color)) | |
34 description = sapply(split(names(color), color), function(x) paste(unique(x), collapse=";")) | |
35 description = gsub(".+;.+", "Other", description) | |
36 description = gsub("All", "Other", description) | |
37 if ("Other" %in% description & length(description) > 1){ | |
38 description = c(description[! description %in% "Other"], description[description %in% "Other"]) | |
39 } | |
40 ord = order(factor(names(description), levels = twenty_colors)) | |
41 legend_info = list(name = gsub("All", "NA", description)[ord], color = names(description)[ord]) | |
42 } | |
43 | |
44 plot_rect_map = function(read_counts,cluster_annotation, output_file,GS, RL, Xcoef=1,Ycoef=1){ | |
45 ## read_counts : correspond to COMPARATIVE_ANALYSIS_COUNTS.csv | |
46 ## cluster annotation : CLUSTER_TABLE.csv | |
47 counts = read.table(read_counts,header=TRUE,as.is=TRUE) | |
48 input_read_counts = unlist(read.table(read_counts, nrows = 1, comment.char = "",sep="\t")[-(1:2)]) | |
49 | |
50 counts_file_valid = ncol(counts) == (length(input_read_counts) + 2) & all(colnames(input_read_counts)[1:2]==c("cluster", "supercluster")) | |
51 ## find which line is header | |
52 header_line = grep(".*Cluster.*Supercluster.*Size", readLines(cluster_annotation)) | |
53 annot = read.table(cluster_annotation, sep="\t",header=TRUE,as.is=TRUE, skip = header_line - 1) | |
54 ## validate | |
55 annot_file_valid = all(colnames(annot)==c("Cluster","Supercluster","Size","Size_adjusted","Automatic_annotation","TAREAN_annotation","Final_annotation")) | |
56 | |
57 | |
58 if (!annot_file_valid | !counts_file_valid){ | |
59 pdf(output_file) | |
60 plot.new() | |
61 text(0.5,0.5,"Input is not valid, check input files!") | |
62 dev.off() | |
63 stop("Input files are not valid!") | |
64 } | |
65 print(annot_file_valid) | |
66 print(counts_file_valid) | |
67 ## remove counts which are not in annotation - only clusters in annot will be plotted! | |
68 counts = counts[annot$Cluster,] | |
69 N = nrow(annot) | |
70 | |
71 counts_automatic = counts | |
72 annot_automatic = annot | |
73 input_read_counts_automatic = input_read_counts | |
74 # remove organelar and contamination if required make count correction | |
75 if (opt$nuclear_only){ | |
76 exclude=grep("contamination|organelle",annot$Automatic_annotation) | |
77 if (length(exclude)>0){ | |
78 counts_automatic = counts[-exclude, , drop=FALSE] | |
79 annot_automatic = annot[-exclude, ,drop=FALSE] | |
80 input_read_counts_automatic = input_read_counts - colSums(counts[exclude,-c(1:2) , drop=FALSE]) | |
81 } | |
82 } | |
83 color_auto = get_color(annot_automatic$Automatic_annotation, annot_automatic$Size) | |
84 | |
85 legend_info = make_legend(color_auto) | |
86 params = list(Automatic_annotation = list( | |
87 color = color_auto, | |
88 legend = legend_info, | |
89 counts = counts_automatic, | |
90 annot = annot_automatic, | |
91 input_read_counts = input_read_counts_automatic | |
92 ) | |
93 ) | |
94 | |
95 | |
96 if (!is.null(annot$Final_annotation)){ | |
97 | |
98 ## column with manual annotation exist - check if correct | |
99 if (any(annot$Final_annotation %in% "" | any(is.na(annot$Final_annotation)))){ | |
100 message("Final annotation is not complete, skipping") | |
101 }else{ | |
102 | |
103 counts_manual = counts | |
104 annot_manual = annot | |
105 input_read_counts_manual = input_read_counts | |
106 ## correction must be done idependetly in case manual and automatic classification differ in annotation | |
107 if (opt$nuclear_only){ | |
108 exclude=grep("contamination|organelle",annot$Final_annotation) | |
109 if (length(exclude)>0){ | |
110 counts_manual = counts[-exclude, , drop=FALSE] | |
111 annot_manual = annot[-exclude, ,drop=FALSE] | |
112 input_read_counts_manual = input_read_counts - colSums(counts[exclude,-c(1:2) , drop=FALSE]) | |
113 } | |
114 } | |
115 ## append | |
116 color_manual = get_color(annot_manual$Final_annotation, annot_manual$Size) | |
117 legend_info_manual = make_legend(color_manual) | |
118 | |
119 params$Final_annotation = list( | |
120 color = color_manual, | |
121 legend = legend_info_manual, | |
122 counts = counts_manual, | |
123 annot = annot_manual, | |
124 input_read_counts = input_read_counts_manual | |
125 | |
126 ) | |
127 } | |
128 } | |
129 | |
130 ## set size of pdf output | |
131 wdth = (3 + N*0.03 ) * Xcoef | |
132 hgt = (2.2 + ncol(counts)*0.20) * Ycoef | |
133 if (!any(is.na(GS))){ | |
134 hgt = hgt + ncol(counts)*0.20 * Ycoef | |
135 } | |
136 ptsize = round((wdth*hgt)^(1/4))*5 | |
137 | |
138 | |
139 pdf(output_file, width=wdth,height=hgt, pointsize = ptsize) # was 50 | |
140 ## originaly - printing of both automatic and final annotation | |
141 ## now - print only final_annotation if available | |
142 if (length(params) == 2){ | |
143 ## remove automatic | |
144 params$Automatic_annotation = NULL | |
145 } | |
146 ## | |
147 | |
148 for (j in seq_along(params)){ | |
149 Nclust = nrow(params[[j]]$annot) | |
150 ##prepare matrix for plotting | |
151 M = as.matrix(params[[j]]$counts[1:Nclust,-(1:2)]) | |
152 rownames(M) = paste0("CL",rownames(M)) | |
153 Mn1=(M)/apply(M,1,max) | |
154 Mn2=M/max(M) | |
155 ord1 = hclust(dist(Mn1),method = "ward.D")$order | |
156 ord2 = hclust(dist(t(Mn2)))$order | |
157 | |
158 ploting_area_width = 3 + log10(Nclust)*3 | |
159 ploting_area_sides = 1.5 | |
160 legend_width = 3 | |
161 title_height = 0.5 | |
162 if (any(is.na(GS))){ | |
163 layout(matrix(c(0,0,0,3,0,2,0,3,0,1,0,3),ncol=4,byrow = TRUE), | |
164 width=c(ploting_area_sides,ploting_area_width,ploting_area_sides, legend_width), | |
165 height=c(title_height, 3,ncol(M)*0.8)) | |
166 }else{ | |
167 ## extra row for legends | |
168 | |
169 | |
170 layout(matrix(c(0,0,0,3,0,2,0,3,0,1,0,3,0,0,0,4),ncol=4,byrow = TRUE), | |
171 width=c(ploting_area_sides,ploting_area_width,ploting_area_sides, legend_width), | |
172 height=c(title_height, 3,ncol(M)*0.8,ncol(M)*0.8 )) | |
173 } | |
174 | |
175 | |
176 par(xaxs='i', yaxs = 'i') | |
177 par(las=2,mar=c(4,0,0,0),cex.axis=0.5) | |
178 | |
179 if (any(is.na(GS))){ | |
180 rectMap(Mn2[ord1,ord2],scale.by='row',col=params[[j]]$color[ord1], grid=TRUE) | |
181 }else{ | |
182 # use genomic sizes | |
183 Mn3 = t(t(M) * (GS[colnames(M),] / params[[j]]$input_read_counts))[ord1,ord2] | |
184 ## rescale | |
185 MaxGS = max(Mn3) | |
186 Mn3 = Mn3/max(Mn3) | |
187 rectMap(Mn3,scale.by='none',col=params[[j]]$color[ord1], grid=TRUE) | |
188 } | |
189 par(las=2,mar=c(1,0,1,0), mgp = c(2,1,0)) | |
190 barplot(params[[j]]$annot$Size[ord1], col = 1) | |
191 mtext(side = 2, "Cluster size", las = 3, line = 2.5, cex = 0.5) | |
192 mtext(side=3, names(params)[j], las=0, line=1) | |
193 plot.new() | |
194 legend("topleft", col= params[[j]]$legend$color, legend=params[[j]]$legend$name, pch=15, cex=0.7, bty="n", pt.cex=1) | |
195 } | |
196 | |
197 if (!any(is.na(GS))){ | |
198 ## plot GS scale | |
199 par(xaxs='i', yaxs = 'i') | |
200 print(log(nrow(Mn3))) | |
201 par(las=2,mar=c(4,0,0,log(nrow(Mn3))),cex.axis=0.5) # same par as recplot above to keep the scale | |
202 Mn3scale = Mn3 | |
203 Mn3scale[,] = 0 | |
204 colnames(Mn3scale)=rep("", ncol(Mn3scale)) | |
205 rownames(Mn3scale)=rep("", nrow(Mn3scale)) | |
206 Mn3scale[,1] = seq(0,1, length.out = nrow(Mn3)) | |
207 rectMap(Mn3scale,scale.by='none',col="grey", grid=FALSE, boxlab="", draw_box=FALSE, center=FALSE) | |
208 slabels = pretty(c(0,MaxGS), n = 10) | |
209 sat = slabels/MaxGS * nrow(Mn3scale) | |
210 axis(side=1, at= sat, labels = slabels, line = 0) | |
211 mtext(side = 1, text = "Repeat abundance", las=1, line=2.5,cex=0.4) | |
212 mtext(side = 2, text = "Rectangle\n height", las=1, line=2,cex=0.4, at=1) | |
213 | |
214 axis(2, at=c(0.5, 1, 1.5), labels=c(0,0.5,1),line=0) | |
215 } | |
216 st = dev.off() | |
217 } | |
218 | |
219 rectMap=function(x,scale.by='row',col=1,xlab="",ylab="",grid=TRUE,axis_pos=c(1,4),boxlab = "Cluster Id", cexx=NULL,cexy=NULL, draw_box=TRUE, center=TRUE){ | |
220 if (scale.by=='row'){ | |
221 #x=(x)/rowSums(x) | |
222 x=(x)/apply(x,1,sum) | |
223 } | |
224 if (scale.by=='column'){ | |
225 x=t(t(x)/apply(x,2,max)) | |
226 } | |
227 nc=ncol(x) | |
228 nr=nrow(x) | |
229 coords=expand.grid(1:nr,1:nc) | |
230 plot(coords[,1],coords[,2],type='n',axes=F,xlim=range(coords[,1])+c(-.5,.5),ylim=range(coords[,2])+c(-.5,.5),xlab=xlab,ylab=ylab) | |
231 axis(axis_pos[1],at=1:nr,labels=rownames(x),lty=0,tick=FALSE,line=0,cex.axis=0.5/log10(nr)) | |
232 axis(axis_pos[2],at=1:nc,labels=colnames(x),lty=0,tick=FALSE,las=2,line=0 ,hadj=0, cex.axis=0.7) | |
233 axis(2,at=1:nc,labels=colnames(x),lty=0,tick=FALSE,las=2,line=0 ,hadj=1, cex.axis=0.7) | |
234 | |
235 mtext(side = 1, boxlab, las=1, line = 3, cex = 0.5) | |
236 line = 1.5 + log10(nr) | |
237 #mtext(side = 2, "Proportions of individual samples", las =0, line = line, cex = 0.5) | |
238 s=x/2 | |
239 w = c(x)/2 | |
240 if(center){ | |
241 rect(coords[,1]-0.5,coords[,2]-s,coords[,1]+0.5,coords[,2]+s,col=col,border=NA) | |
242 }else{ | |
243 rect(coords[,1]-0.5,coords[,2]-0.5,coords[,1]+0.5,coords[,2]+x-0.5,col=col,border=NA) | |
244 } | |
245 if (grid){ | |
246 abline(v=0:(nr)+.5,h=0:(nc)+.5,lty=2,col="#60606030",lwd=0.2) | |
247 } | |
248 if(draw_box){ | |
249 box(col="#60606030",lty=2, lwd=0.2) | |
250 } | |
251 } | |
252 | |
253 option_list <- list( | |
254 make_option(c("-c", "--cluster_table"), default=NA, type = "character", | |
255 help="file from RepeatExplorer2 clustering - CLUSTER_TABLE.csv"), | |
256 | |
257 make_option(c("-m", "--comparative_counts"),default = NA,type = "character", | |
258 help="file from RepeatExplorer2 output - COMPARATIVE_ANALYSIS_COUNTS.csv"), | |
259 | |
260 make_option(c("-o", "--output"), type="character", | |
261 default="comparative_analysis_summary.pdf", | |
262 help="File name for output figures (pdf document)"), | |
263 make_option(c("-N", "--number_of_colors"), type="integer", default=10, | |
264 help="Number of unique colors used from plotting (2-20, default is 10)"), | |
265 | |
266 make_option(c("-g", "--genome_size"),default = NA,type = "character", | |
267 help="file from genome sizes of species provided in tab delimited file in the format: | |
268 | |
269 species_code1 GenomeSize1 | |
270 species_code2 GenomeSize2 | |
271 species_code3 GenomeSize3 | |
272 species_code4 GenomeSize4 | |
273 | |
274 provide the same codes for species as in file COMPARATIVE_ANALYSIS_COUNTS.csv. The use of genome | |
275 sizes file imply the --nuclear_only option. If genome sizes are used, genomic abundance scale is added. | |
276 "), | |
277 make_option(c("-n", "--nuclear_only"), default = FALSE, type="logical", | |
278 action = "store_true", | |
279 help="remove all non-nuclear sequences (organelle and contamination). ") | |
280 ) | |
281 | |
282 | |
283 opt = parse_args(OptionParser(option_list = option_list)) | |
284 | |
285 if (any(is.na(c(opt$cluster_table, opt$comparative_counts)))){ | |
286 message("\nBoth files: CLUSTER_TABLE.csv and COMPARATIVE_ANALYSIS_COUNTS.csv must be provided\n") | |
287 q() | |
288 } | |
289 | |
290 if (!opt$number_of_colors %in% 1:20){ | |
291 message("number of color must be in range 1..20") | |
292 stop() | |
293 } | |
294 | |
295 if (!is.na(opt$genome_size)){ | |
296 GS = read.table(opt$genome_size, header=FALSE, as.is=TRUE, row.names = 1) | |
297 opt$nuclear_only=TRUE | |
298 }else{ | |
299 GS = NA | |
300 RL = NA | |
301 } | |
302 | |
303 plot_rect_map(opt$comparative_counts, opt$cluster_table, opt$output, GS, RL) | |
304 |