Mercurial > repos > petr-novak > re_utils
view plot_comparative_clustering_summary.R @ 17:d14b68e9fd1d draft
Uploaded - new tools added
author | petr-novak |
---|---|
date | Wed, 28 Apr 2021 08:37:20 +0000 |
parents | |
children | 5a05925340b0 |
line wrap: on
line source
#!/usr/bin/env Rscript library(optparse) ## TODO - add scale to legend! twenty_colors = c( '#e6194b', '#3cb44b', '#ffe119', '#4363d8', '#f58231', '#911eb4', '#46f0f0', '#f032e6', '#bcf60c', '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8', '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075', "#000000" ) get_color = function(classification, size){ ## 20 of unique colors, first is black unique_colors = twenty_colors[1:opt$number_of_colors] Ncol = length(unique_colors) ## rest wil be grey: grey_color = "#a9a9a9" ## unique repeats without All include = !classification %in% "All" unique_repeats = names(c(sort(by(size[include], INDICES = classification[include], FUN = sum), decreasing = TRUE))) color_table = unique_colors[1:min(Ncol,length(unique_repeats))] names(color_table) = unique_repeats[1:min(Ncol,length(unique_repeats))] color = rep(grey_color, length(classification)) names(color) = classification for (ac in names(color_table)){ color[names(color) %in% ac] = color_table[ac] } return(color) } make_legend = function(color){ ## simplify description: names(color) = gsub(".+/","",names(color)) description = sapply(split(names(color), color), function(x) paste(unique(x), collapse=";")) description = gsub(".+;.+", "Other", description) description = gsub("All", "Other", description) if ("Other" %in% description & length(description) > 1){ description = c(description[! description %in% "Other"], description[description %in% "Other"]) } ord = order(factor(names(description), levels = twenty_colors)) legend_info = list(name = gsub("All", "NA", description)[ord], color = names(description)[ord]) } plot_rect_map = function(read_counts,cluster_annotation, output_file,GS, RL, Xcoef=1,Ycoef=1){ ## read_counts : correspond to COMPARATIVE_ANALYSIS_COUNTS.csv ## cluster annotation : CLUSTER_TABLE.csv counts = read.table(read_counts,header=TRUE,as.is=TRUE) input_read_counts = unlist(read.table(read_counts, nrows = 1, comment.char = "",sep="\t")[-(1:2)]) counts_file_valid = ncol(counts) == (length(input_read_counts) + 2) & all(colnames(input_read_counts)[1:2]==c("cluster", "supercluster")) ## find which line is header header_line = grep(".*Cluster.*Supercluster.*Size", readLines(cluster_annotation)) annot = read.table(cluster_annotation, sep="\t",header=TRUE,as.is=TRUE, skip = header_line - 1) ## validate annot_file_valid = all(colnames(annot)==c("Cluster","Supercluster","Size","Size_adjusted","Automatic_annotation","TAREAN_annotation","Final_annotation")) if (!annot_file_valid | !counts_file_valid){ pdf(output_file) plot.new() text(0.5,0.5,"Input is not valid, check input files!") dev.off() stop("Input files are not valid!") } print(annot_file_valid) print(counts_file_valid) ## remove counts which are not in annotation - only clusters in annot will be plotted! counts = counts[annot$Cluster,] N = nrow(annot) counts_automatic = counts annot_automatic = annot input_read_counts_automatic = input_read_counts # remove organelar and contamination if required make count correction if (opt$nuclear_only){ exclude=grep("contamination|organelle",annot$Automatic_annotation) if (length(exclude)>0){ counts_automatic = counts[-exclude, , drop=FALSE] annot_automatic = annot[-exclude, ,drop=FALSE] input_read_counts_automatic = input_read_counts - colSums(counts[exclude,-c(1:2) , drop=FALSE]) } } color_auto = get_color(annot_automatic$Automatic_annotation, annot_automatic$Size) legend_info = make_legend(color_auto) params = list(Automatic_annotation = list( color = color_auto, legend = legend_info, counts = counts_automatic, annot = annot_automatic, input_read_counts = input_read_counts_automatic ) ) if (!is.null(annot$Final_annotation)){ ## column with manual annotation exist - check if correct if (any(annot$Final_annotation %in% "" | any(is.na(annot$Final_annotation)))){ message("Final annotation is not complete, skipping") }else{ counts_manual = counts annot_manual = annot input_read_counts_manual = input_read_counts ## correction must be done idependetly in case manual and automatic classification differ in annotation if (opt$nuclear_only){ exclude=grep("contamination|organelle",annot$Final_annotation) if (length(exclude)>0){ counts_manual = counts[-exclude, , drop=FALSE] annot_manual = annot[-exclude, ,drop=FALSE] input_read_counts_manual = input_read_counts - colSums(counts[exclude,-c(1:2) , drop=FALSE]) } } ## append color_manual = get_color(annot_manual$Final_annotation, annot_manual$Size) legend_info_manual = make_legend(color_manual) params$Final_annotation = list( color = color_manual, legend = legend_info_manual, counts = counts_manual, annot = annot_manual, input_read_counts = input_read_counts_manual ) } } ## set size of pdf output wdth = (3 + N*0.03 ) * Xcoef hgt = (2.2 + ncol(counts)*0.20) * Ycoef if (!any(is.na(GS))){ hgt = hgt + ncol(counts)*0.20 * Ycoef } ptsize = round((wdth*hgt)^(1/4))*5 pdf(output_file, width=wdth,height=hgt, pointsize = ptsize) # was 50 ## originaly - printing of both automatic and final annotation ## now - print only final_annotation if available if (length(params) == 2){ ## remove automatic params$Automatic_annotation = NULL } ## for (j in seq_along(params)){ Nclust = nrow(params[[j]]$annot) ##prepare matrix for plotting M = as.matrix(params[[j]]$counts[1:Nclust,-(1:2)]) rownames(M) = paste0("CL",rownames(M)) Mn1=(M)/apply(M,1,max) Mn2=M/max(M) ord1 = hclust(dist(Mn1),method = "ward.D")$order ord2 = hclust(dist(t(Mn2)))$order ploting_area_width = 3 + log10(Nclust)*3 ploting_area_sides = 1.5 legend_width = 3 title_height = 0.5 if (any(is.na(GS))){ layout(matrix(c(0,0,0,3,0,2,0,3,0,1,0,3),ncol=4,byrow = TRUE), width=c(ploting_area_sides,ploting_area_width,ploting_area_sides, legend_width), height=c(title_height, 3,ncol(M)*0.8)) }else{ ## extra row for legends layout(matrix(c(0,0,0,3,0,2,0,3,0,1,0,3,0,0,0,4),ncol=4,byrow = TRUE), width=c(ploting_area_sides,ploting_area_width,ploting_area_sides, legend_width), height=c(title_height, 3,ncol(M)*0.8,ncol(M)*0.8 )) } par(xaxs='i', yaxs = 'i') par(las=2,mar=c(4,0,0,0),cex.axis=0.5) if (any(is.na(GS))){ rectMap(Mn2[ord1,ord2],scale.by='row',col=params[[j]]$color[ord1], grid=TRUE) }else{ # use genomic sizes Mn3 = t(t(M) * (GS[colnames(M),] / params[[j]]$input_read_counts))[ord1,ord2] ## rescale MaxGS = max(Mn3) Mn3 = Mn3/max(Mn3) rectMap(Mn3,scale.by='none',col=params[[j]]$color[ord1], grid=TRUE) } par(las=2,mar=c(1,0,1,0), mgp = c(2,1,0)) barplot(params[[j]]$annot$Size[ord1], col = 1) mtext(side = 2, "Cluster size", las = 3, line = 2.5, cex = 0.5) mtext(side=3, names(params)[j], las=0, line=1) plot.new() legend("topleft", col= params[[j]]$legend$color, legend=params[[j]]$legend$name, pch=15, cex=0.7, bty="n", pt.cex=1) } if (!any(is.na(GS))){ ## plot GS scale par(xaxs='i', yaxs = 'i') print(log(nrow(Mn3))) par(las=2,mar=c(4,0,0,log(nrow(Mn3))),cex.axis=0.5) # same par as recplot above to keep the scale Mn3scale = Mn3 Mn3scale[,] = 0 colnames(Mn3scale)=rep("", ncol(Mn3scale)) rownames(Mn3scale)=rep("", nrow(Mn3scale)) Mn3scale[,1] = seq(0,1, length.out = nrow(Mn3)) rectMap(Mn3scale,scale.by='none',col="grey", grid=FALSE, boxlab="", draw_box=FALSE, center=FALSE) slabels = pretty(c(0,MaxGS), n = 10) sat = slabels/MaxGS * nrow(Mn3scale) axis(side=1, at= sat, labels = slabels, line = 0) mtext(side = 1, text = "Repeat abundance", las=1, line=2.5,cex=0.4) mtext(side = 2, text = "Rectangle\n height", las=1, line=2,cex=0.4, at=1) axis(2, at=c(0.5, 1, 1.5), labels=c(0,0.5,1),line=0) } st = dev.off() } rectMap=function(x,scale.by='row',col=1,xlab="",ylab="",grid=TRUE,axis_pos=c(1,4),boxlab = "Cluster Id", cexx=NULL,cexy=NULL, draw_box=TRUE, center=TRUE){ if (scale.by=='row'){ #x=(x)/rowSums(x) x=(x)/apply(x,1,sum) } if (scale.by=='column'){ x=t(t(x)/apply(x,2,max)) } nc=ncol(x) nr=nrow(x) coords=expand.grid(1:nr,1:nc) plot(coords[,1],coords[,2],type='n',axes=F,xlim=range(coords[,1])+c(-.5,.5),ylim=range(coords[,2])+c(-.5,.5),xlab=xlab,ylab=ylab) axis(axis_pos[1],at=1:nr,labels=rownames(x),lty=0,tick=FALSE,line=0,cex.axis=0.5/log10(nr)) axis(axis_pos[2],at=1:nc,labels=colnames(x),lty=0,tick=FALSE,las=2,line=0 ,hadj=0, cex.axis=0.7) axis(2,at=1:nc,labels=colnames(x),lty=0,tick=FALSE,las=2,line=0 ,hadj=1, cex.axis=0.7) mtext(side = 1, boxlab, las=1, line = 3, cex = 0.5) line = 1.5 + log10(nr) #mtext(side = 2, "Proportions of individual samples", las =0, line = line, cex = 0.5) s=x/2 w = c(x)/2 if(center){ rect(coords[,1]-0.5,coords[,2]-s,coords[,1]+0.5,coords[,2]+s,col=col,border=NA) }else{ rect(coords[,1]-0.5,coords[,2]-0.5,coords[,1]+0.5,coords[,2]+x-0.5,col=col,border=NA) } if (grid){ abline(v=0:(nr)+.5,h=0:(nc)+.5,lty=2,col="#60606030",lwd=0.2) } if(draw_box){ box(col="#60606030",lty=2, lwd=0.2) } } option_list <- list( make_option(c("-c", "--cluster_table"), default=NA, type = "character", help="file from RepeatExplorer2 clustering - CLUSTER_TABLE.csv"), make_option(c("-m", "--comparative_counts"),default = NA,type = "character", help="file from RepeatExplorer2 output - COMPARATIVE_ANALYSIS_COUNTS.csv"), make_option(c("-o", "--output"), type="character", default="comparative_analysis_summary.pdf", help="File name for output figures (pdf document)"), make_option(c("-N", "--number_of_colors"), type="integer", default=10, help="Number of unique colors used from plotting (2-20, default is 10)"), make_option(c("-g", "--genome_size"),default = NA,type = "character", help="file from genome sizes of species provided in tab delimited file in the format: species_code1 GenomeSize1 species_code2 GenomeSize2 species_code3 GenomeSize3 species_code4 GenomeSize4 provide the same codes for species as in file COMPARATIVE_ANALYSIS_COUNTS.csv. The use of genome sizes file imply the --nuclear_only option. If genome sizes are used, genomic abundance scale is added. "), make_option(c("-n", "--nuclear_only"), default = FALSE, type="logical", action = "store_true", help="remove all non-nuclear sequences (organelle and contamination). ") ) opt = parse_args(OptionParser(option_list = option_list)) if (any(is.na(c(opt$cluster_table, opt$comparative_counts)))){ message("\nBoth files: CLUSTER_TABLE.csv and COMPARATIVE_ANALYSIS_COUNTS.csv must be provided\n") q() } if (!opt$number_of_colors %in% 1:20){ message("number of color must be in range 1..20") stop() } if (!is.na(opt$genome_size)){ GS = read.table(opt$genome_size, header=FALSE, as.is=TRUE, row.names = 1) opt$nuclear_only=TRUE }else{ GS = NA RL = NA } plot_rect_map(opt$comparative_counts, opt$cluster_table, opt$output, GS, RL)