Mercurial > repos > pieterlukasse > prims_metabolomics
view test/integration_tests.py @ 32:746cb34f10ed
new mem setting
author | pieter.lukasse@wur.nl |
---|---|
date | Tue, 16 Sep 2014 07:31:36 +0200 |
parents | 53e1eee93430 |
children |
line wrap: on
line source
'''Integration tests for the GCMS project''' from pkg_resources import resource_filename # @UnresolvedImport # pylint: disable=E0611 from GCMS import library_lookup, combine_output from GCMS.rankfilter_GCMS import rankfilter import os.path import sys import unittest import re class IntegrationTest(unittest.TestCase): def test_library_lookup(self): ''' Run main for data/NIST_tabular and compare produced files with references determined earlier. ''' # Create out folder outdir = "output/" #tempfile.mkdtemp(prefix='test_library_lookup') if not os.path.exists(outdir): os.makedirs(outdir) outfile_base = os.path.join(outdir, 'produced_library_lookup') outfile_txt = outfile_base + '.txt' #Build up arguments and run input_txt = resource_filename(__name__, "data/NIST_tabular.txt") library = resource_filename(__name__, "data/RIDB_subset.txt") regress_model = resource_filename(__name__, "data/ridb_poly_regression.txt") sys.argv = ['test', library, input_txt, 'Capillary', 'Semi-standard non-polar', outfile_txt, 'HP-5', regress_model] # Execute main function with arguments provided through sys.argv library_lookup.main() #Compare with reference files reference_txt = resource_filename(__name__, 'reference/produced_library_lookup.txt') #read both the reference file and actual output files expected = _read_file(reference_txt) actual = _read_file(outfile_txt) #convert the read in files to lists we can compare expected = expected.split() actual = actual.split() for exp, act in zip(expected, actual): if re.match('\\d+\\.\\d+', exp): exp = float(exp) act = float(act) self.assertAlmostEqual(exp, act, places=5) else: # compare values self.failUnlessEqual(expected, actual) def test_combine_output_simple(self): ''' Run main for data/NIST_tabular and compare produced files with references determined earlier. ''' # Create out folder outdir = "output/" #tempfile.mkdtemp(prefix='test_library_lookup') if not os.path.exists(outdir): os.makedirs(outdir) outfile_base = os.path.join(outdir, 'produced_combine_output') outfile_single_txt = outfile_base + '_single.txt' outfile_multi_txt = outfile_base + '_multi.txt' #Build up arguments and run input_rankfilter = resource_filename(__name__, "data/Rankfilter.txt") input_caslookup = resource_filename(__name__, "data/Caslookup.txt") sys.argv = ['test', input_rankfilter, input_caslookup, outfile_single_txt, outfile_multi_txt] # Execute main function with arguments provided through sys.argv combine_output.main() #Compare with reference files # reference_single_txt = resource_filename(__name__, 'reference/produced_combine_output_single.txt') # reference_multi_txt = resource_filename(__name__, 'reference/produced_combine_output_multi.txt') # self.failUnlessEqual(_read_file(reference_single_txt), _read_file(outfile_single_txt)) # self.failUnlessEqual(_read_file(reference_multi_txt), _read_file(outfile_multi_txt)) #Clean up #shutil.rmtree(tempdir) def def_test_rank_filter_advanced(self): ''' Run main of RankFilter ''' # Create out folder outdir = "output/integration/" if not os.path.exists(outdir): os.makedirs(outdir) #Build up arguments and run input_txt = resource_filename(__name__, "data/integration/RankFilterInput_conf.txt") sys.argv = ['test', input_txt] # Execute main function with arguments provided through sys.argv rankfilter.main() #Compare with reference files def def_test_library_lookup_advanced(self): ''' Run main for data/NIST_tabular and compare produced files with references determined earlier. ''' # Create out folder outdir = "output/integration/" if not os.path.exists(outdir): os.makedirs(outdir) outfile_base = os.path.join(outdir, 'produced_library_lookup_ADVANCED') outfile_txt = outfile_base + '.txt' #Build up arguments and run input_txt = resource_filename(__name__, "data/integration/NIST_identification_results_tabular.txt") library = resource_filename(__name__, "../repositories/PRIMS-metabolomics/RI_DB_libraries/Library_RI_DB_capillary_columns-noDuplicates.txt") regress_model = resource_filename(__name__, "data/integration/regression_MODEL_for_columns.txt") sys.argv = ['test', library, input_txt, 'Capillary', 'Semi-standard non-polar', outfile_txt, 'DB-5', regress_model] # Execute main function with arguments provided through sys.argv library_lookup.main() def test_combine_output_advanced(self): ''' Variant on test case above, but a bit more complex as some of the centrotypes have different NIST hits which should give them different RI values. This test also runs not only the combine output, but the other two preceding steps as well, so it ensures the integration also works on the current code of all three tools. ''' # Run RankFilter self.def_test_rank_filter_advanced() # Run library CAS RI lookup self.def_test_library_lookup_advanced() outdir = "output/integration/" outfile_base = os.path.join(outdir, 'produced_combine_output') outfile_single_txt = outfile_base + '_single.txt' outfile_multi_txt = outfile_base + '_multi.txt' #Build up arguments and run input_rankfilter = resource_filename(__name__, "output/integration/produced_rank_filter_out.txt") input_caslookup = resource_filename(__name__, "output/integration/produced_library_lookup_ADVANCED.txt") sys.argv = ['test', input_rankfilter, input_caslookup, outfile_single_txt, outfile_multi_txt] # Execute main function with arguments provided through sys.argv combine_output.main() #Compare with reference files # reference_single_txt = resource_filename(__name__, 'reference/produced_combine_output_single.txt') # reference_multi_txt = resource_filename(__name__, 'reference/produced_combine_output_multi.txt') # self.failUnlessEqual(_read_file(reference_single_txt), _read_file(outfile_single_txt)) # self.failUnlessEqual(_read_file(reference_multi_txt), _read_file(outfile_multi_txt)) # Check 1: output single should have one record per centrotype: # Check 2: output single has more records than output single: combine_result_single_items = combine_output._process_data(outfile_single_txt) combine_result_multi_items = combine_output._process_data(outfile_multi_txt) self.assertGreater(len(combine_result_single_items['Centrotype']), len(combine_result_multi_items['Centrotype'])) # Check 3: library_lookup RI column, centrotype column, ri_svr column are correct: caslookup_items = combine_output._process_data(input_caslookup) rankfilter_items = combine_output._process_data(input_rankfilter) # check that the caslookup RI column is correctly maintained in its original order in # the combined file: ri_caslookup = caslookup_items['RI'] ri_combine_single = combine_result_single_items['RI'] self.assertListEqual(ri_caslookup, ri_combine_single) # check the centrotype column's integrity: centrotype_caslookup = caslookup_items['Centrotype'] centrotype_combine_single = combine_result_single_items['Centrotype'] centrotype_rankfilter = _get_centrotype_rankfilter(rankfilter_items['ID']) self.assertListEqual(centrotype_caslookup, centrotype_combine_single) self.assertListEqual(centrotype_caslookup, centrotype_rankfilter) # integration and integrity checks: file_NIST = resource_filename(__name__, "data/integration/NIST_identification_results_tabular.txt") file_NIST_items = combine_output._process_data(file_NIST) # check that rank filter output has exactly the same ID items as the original NIST input file: self.assertListEqual(file_NIST_items['ID'], rankfilter_items['ID']) # check the same for the CAS column: self.assertListEqual(_get_strippedcas(file_NIST_items['CAS']), rankfilter_items['CAS']) # now check the NIST CAS column against the cas lookup results: cas_NIST = _get_processedcas(file_NIST_items['CAS']) self.assertListEqual(cas_NIST, caslookup_items['CAS']) # now check the CAS of the combined result. If all checks are OK, it means the CAS column's order # and values remained stable throughout all steps: self.assertListEqual(rankfilter_items['CAS'], combine_result_single_items['CAS']) # check that the rankfilter RIsvr column is correctly maintained in its original order in # the combined file: risvr_rankfilter = rankfilter_items['RIsvr'] risvr_combine_single = combine_result_single_items['RIsvr'] self.assertListEqual(risvr_rankfilter, risvr_combine_single) def _get_centrotype_rankfilter(id_list): ''' returns the list of centrotype ids given a list of ID in the form e.g. 74-1.0-564-1905200-7, where the numbers before the first "-" are the centrotype id ''' result = [] for compound_id_idx in xrange(len(id_list)): compound_id = id_list[compound_id_idx] centrotype = compound_id.split('-')[0] result.append(centrotype) return result def _get_processedcas(cas_list): ''' returns the list cas numbers in the form C64175 instead of 64-17-5 ''' result = [] for cas_id_idx in xrange(len(cas_list)): cas = cas_list[cas_id_idx] processed_cas = 'C' + str(cas.replace('-', '').strip()) result.append(processed_cas) return result def _get_strippedcas(cas_list): ''' removes the leading white space from e.g. " 64-17-5" ''' result = [] for cas_id_idx in xrange(len(cas_list)): cas = cas_list[cas_id_idx] processed_cas = cas.strip() result.append(processed_cas) return result def _read_file(filename): ''' Helper method to quickly read a file @param filename: ''' with open(filename) as handle: return handle.read()