Mercurial > repos > pieterlukasse > prims_metabolomics
view Rscripts/ridb-regression.R @ 61:d685210eef3e
fix in pdftotabular tool
author | pieter.lukasse@wur.nl |
---|---|
date | Fri, 19 Dec 2014 15:30:13 +0100 |
parents | 9d5f4f5f764b |
children |
line wrap: on
line source
## # # Performs regression analysis using either 3rd degree polynomial- or linear-method # ## # Commandline arguments args <- commandArgs(TRUE) if (length(args) < 7) stop(cat("Missing arguments, usage:\n\tRscript ridb-regression.R RI-database ", "ouput_file logfile min_residuals range_mod pvalue rsquared method ", "plot(yes/no) plot_archive")) ridb <- args[1] out_file <- args[2] logfile <- args[3] min_residuals <- as.integer(args[4]) range_mod <- as.integer(args[5]) pvalue <- as.double(args[6]) rsquared <- as.double(args[7]) method <- args[8] plot <- tolower(args[9]) if (plot == 'true') plot_archive = args[10] # Do not show warnings etc. sink(file='/dev/null') progress <- c() logger <- function(logdata) { ## Logs progress, adds a timestamp for each event #cat(paste(Sys.time(), "\t", logdata, "\n", sep="")) ## DEBUG progress <<- c(progress, paste(Sys.time(), "\t", logdata, sep="")) } logger("Reading Retention Index Database..") # Read Retention Index Database ridb <- read.csv(ridb, header=TRUE, sep="\t") logger(paste("\t", nrow(ridb), "records read..")) # Get a unique list gc_columns <- unique(as.vector(as.matrix(ridb['Column.name'])[,1])) cas_numbers <- unique(as.vector(as.matrix(ridb['CAS'])[,1])) add_poly_fit <- function(fit, gc1_index, gc2_index, range) { pval = anova.lm(fit)$Pr r.squared = summary(fit)$r.squared data = rep(NA, 11) # Append results to matrix data[1] = gc_columns[gc1_index] # Column 1 data[2] = gc_columns[gc2_index] # Column 2 data[3] = coefficients(fit)[1] # The 4 coefficients data[4] = coefficients(fit)[2] data[5] = coefficients(fit)[3] data[6] = coefficients(fit)[4] data[7] = range[1] # Left limit data[8] = range[2] # Right limit data[9] = length(fit$residuals) # Number of datapoints analysed data[10] = pval[1] # p-value for resulting fitting data[11] = r.squared # R-squared return(data) } add_linear_fit <- function(fit, gc1_index, gc2_index, range) { pval = anova.lm(fit)$Pr r.squared = summary(fit)$r.squared data = rep(NA, 7) # Append results to matrix data[1] = gc_columns[gc1_index] # Column 1 data[2] = gc_columns[gc2_index] # Column 2 data[3] = coefficients(fit)[1] # The 4 coefficients data[4] = coefficients(fit)[2] data[7] = length(fit$residuals) # Number of datapoints analysed data[8] = pval[1] # p-value for resulting fitting data[9] = r.squared # R-squared return(data) } add_fit <- function(fit, gc1_index, gc2_index, range, method) { if (method == 'poly') return(add_poly_fit(fit, gc1_index, gc2_index, range)) else return(add_linear_fit(fit, gc1_index, gc2_index, range)) } plot_fit <- function(ri1, ri2, gc1_index, gc2_index, coeff, range, method) { if (method == 'poly') pol <- function(x) coeff[4]*x^3 + coeff[3]*x^2 + coeff[2]*x + coeff[1] else pol <- function(x) coeff[2]*x + coeff[1] pdf(paste('regression_model_', make.names(gc_columns[gc1_index]), '_vs_', make.names(gc_columns[gc2_index]), '.pdf', sep='')) curve(pol, 250:3750, col="red", lwd=2.5, main='Regression Model', xlab=gc_columns[gc1_index], ylab=gc_columns[gc2_index], xlim=c(250, 3750), ylim=c(250, 3750)) points(ri1, ri2, lwd=0.4) # Add vertical lines showing left- and right limits when using poly method if (method == 'poly') abline(v=range, col="grey", lwd=1.5) dev.off() } # Initialize output dataframe if (method == 'poly') { m <- data.frame(matrix(ncol = 11, nrow = 10)) } else { m <- data.frame(matrix(ncol = 9, nrow = 10)) } get_fit <- function(gc1, gc2, method) { if (method == 'poly') return(lm(gc1 ~ poly(gc2, 3, raw=TRUE))) else return(lm(gc1 ~ gc2)) } # Permutate k <- 1 logger(paste("Permutating (with ", length(gc_columns), " GC-columns)..", sep="")) for (i in 1:(length(gc_columns)-1)) { logger(paste("\tCalculating model for ", gc_columns[i], "..", sep="")) breaks <- 0 for (j in (i+1):length(gc_columns)) { col1 = ridb[which(ridb['Column.name'][,1] == gc_columns[i]),] col2 = ridb[which(ridb['Column.name'][,1] == gc_columns[j]),] # Find CAS numbers for which both columns have data (intersect) cas_intersect = intersect(col1[['CAS']], col2[['CAS']]) # Skip if number of shared CAS entries is < cutoff if (length(cas_intersect) < min_residuals) { breaks = breaks + 1 next } # Gather Retention Indices col1_data = col1[['RI']][match(cas_intersect, col1[['CAS']])] col2_data = col2[['RI']][match(cas_intersect, col2[['CAS']])] # Calculate the range within which regression is possible (and move if 'range_mod' != 0) range = c(min(c(min(col1_data), min(col2_data))), max(c(max(col1_data), max(col2_data)))) if (range_mod != 0) { # Calculate percentage and add/subtract from range perc = diff(range) / 100 perc_cutoff = range_mod * perc range = as.integer(range + c(perc_cutoff, -perc_cutoff)) } # Calculate model for column1 vs column2 and plot if requested fit = get_fit(col1_data, col2_data, method) m[k,] = add_fit(fit, i, j, range, method) if (plot == 'true') plot_fit(col1_data, col2_data, i, j, coefficients(fit), range, method) # Calculate model for column2 vs column1 and plot if requested fit = get_fit(col2_data, col1_data, method) m[k + 1,] = add_fit(fit, j, i, range, method) if (plot == 'true') plot_fit(col2_data, col1_data, j, i, coefficients(fit), range, method) k = k + 2 } logger(paste("\t\t", breaks, " comparisons have been skipped due to nr. of datapoints < cutoff", sep="")) } # Filter on pvalue and R-squared logger("Filtering on pvalue and R-squared..") if (method == 'poly') { pval_index <- which(m[,10] < pvalue) rsquared_index <- which(m[,11] > rsquared) } else { pval_index <- which(m[,8] < pvalue) rsquared_index <- which(m[,9] > rsquared) } logger(paste(nrow(m) - length(pval_index), " models discarded due to pvalue > ", pvalue, sep="")) logger(paste(nrow(m) - length(rsquared_index), " models discarded due to R-squared < ", rsquared, sep="")) # Remaining rows index = unique(c(pval_index, rsquared_index)) # Reduce dataset m = m[index,] sink() # Place plots in the history as a ZIP file if (plot == 'true') { logger("Creating archive with model graphics..") system(paste("zip -9 -r models.zip *.pdf > /dev/null", sep="")) system(paste("cp models.zip ", plot_archive, sep="")) } # Save dataframe as tab separated file logger("All done, saving data..") header = c("Column1", "Column2", "Coefficient1", "Coefficient2", "Coefficient3", "Coefficient4", "LeftLimit", "RightLimit", "Residuals", "pvalue", "Rsquared") if (method != 'poly') header = header[c(1:4, 7:11)] write(progress, logfile) write.table(m, file=out_file, sep="\t", quote=FALSE, col.names=header, row.names=FALSE)