comparison test-data/ceas_out1.log @ 0:f411ce97a351 draft

Uploaded initial version 1.0.2-2
author pjbriggs
date Tue, 30 Jun 2015 07:08:05 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:f411ce97a351
1 ceas -- 0.9.9.7 (package version 1.0.2)
2 INFO @ Tue, 23 Jun 2015 09:12:22:
3 # ARGUMENTS:
4 # name = ceas
5 # gene annotation table = galGal3.refGene
6 # BED file = ceas_in.bed
7 # WIG file = None
8 # extra BED file = None
9 # ChIP annotation = On
10 # gene-centered annotation = On
11 # average profiling = Off
12 # dump profiles = Off
13 # re-annotation for genome background (ChIP region annotation) = False
14 # promoter sizes (ChIP region annotation) = 1000,2000,3000 bp
15 # downstream sizes (ChIP region annotation) = 1000,2000,3000 bp
16 # bidrectional promoter sizes (ChIP region annotation) = 2500,5000 bp
17 # span size (gene-centered annotation) = 3000 bp
18 INFO @ Tue, 23 Jun 2015 09:12:22: #1 read the gene table...
19 INFO @ Tue, 23 Jun 2015 09:12:22: #2 read the bed file of ChIP regions...
20 INFO @ Tue, 23 Jun 2015 09:12:22: #3 perform gene-centered annotation...
21 INFO @ Tue, 23 Jun 2015 09:12:22: #4 See ceas.xls for gene-centered annotation!
22 INFO @ Tue, 23 Jun 2015 09:12:22: #5 read the pre-computed genome bg annotation...
23 INFO @ Tue, 23 Jun 2015 09:12:22: #6 perform ChIP region annotation...
24 INFO @ Tue, 23 Jun 2015 09:12:22: #7 write a R script of ChIP region annotation...
25
26 R version 3.1.2 (2014-10-31) -- "Pumpkin Helmet"
27 Copyright (C) 2014 The R Foundation for Statistical Computing
28 Platform: x86_64-redhat-linux-gnu (64-bit)
29
30 R is free software and comes with ABSOLUTELY NO WARRANTY.
31 You are welcome to redistribute it under certain conditions.
32 Type 'license()' or 'licence()' for distribution details.
33
34 Natural language support but running in an English locale
35
36 R is a collaborative project with many contributors.
37 Type 'contributors()' for more information and
38 'citation()' on how to cite R or R packages in publications.
39
40 Type 'demo()' for some demos, 'help()' for on-line help, or
41 'help.start()' for an HTML browser interface to help.
42 Type 'q()' to quit R.
43
44 > # ARGUMENTS:
45 > # name = ceas
46 > # gene annotation table = galGal3.refGene
47 > # BED file = ceas_in.bed
48 > # WIG file = None
49 > # extra BED file = None
50 > # ChIP annotation = On
51 > # gene-centered annotation = On
52 > # average profiling = Off
53 > # dump profiles = Off
54 > # re-annotation for genome background (ChIP region annotation) = False
55 > # promoter sizes (ChIP region annotation) = 1000,2000,3000 bp
56 > # downstream sizes (ChIP region annotation) = 1000,2000,3000 bp
57 > # bidrectional promoter sizes (ChIP region annotation) = 2500,5000 bp
58 > # span size (gene-centered annotation) = 3000 bp
59 > pdf("ceas.pdf",height=11.5,width=8.5)
60 >
61 > # 09:12:22 Tue, 23 Jun 2015
62 > #
63 > # ChIP annotation
64 > #
65 >
66 >
67 > #
68 > # Chromosomal Distribution
69 > #
70 >
71 > par(mar=c(4, 4, 5, 3.8),oma=c(4, 2, 4, 2))
72 > r0<-c(100.0)
73 > r1<-c(100.0)
74 > height<-rbind(r0,r1)
75 > names=c("26")
76 > mp<-barplot(height=height,names=names,beside=TRUE,horiz=TRUE,col=c("#5FA1C1","#EB9D86"),main="Chromosomal Distribution of ChIP Regions",xlab="Percentage %",ylab="Chromosome",border=FALSE,xlim=c(0.000000,183.333333),cex.names=1)
77 > text(x=c(100.0),y=mp[1,],label=c("100.0 %"),pos=4,offset=0.2,cex=0.9)
78 > text(x=c(100.0),y=mp[2,],label=c("100.0 % (<=4.9e-324)"),pos=4,offset=0.2,cex=0.9)
79 > legend("right",legend=c("Genome","ChIP (p-value)"),col=c("#5FA1C1","#EB9D86"),pch=15,bty="n")
80 >
81 > #
82 > # Promoter,Bipromoter,Downstream, Gene and Regions of interest
83 > #
84 >
85 > par(mfrow=c(4, 1),mar=c(4, 4, 5, 3.8),oma=c(4, 2, 4, 2))
86 > r0<-c(1.8532425688606797, 3.616851183410451, 5.322318854623416)
87 > r1<-c(0.0, 0.0, 0.0)
88 > height<-rbind(r0,r1)
89 > names=c("<=1000 bp","<=2000 bp","<=3000 bp")
90 > mp<-barplot(height=height,names=names,beside=TRUE,horiz=FALSE,col=c("#5FA1C1","#EB9D86"),main="Promoter",ylab="Percentage %",border=FALSE,ylim=c(0.000000,9.757585),cex.names=1)
91 > text(x=mp[1,],y=c(1.8532425688606797, 3.616851183410451, 5.322318854623416),label=c("1.9 %","3.6 %","5.3 %"),pos=3,offset=0.2)
92 > text(x=mp[2,],y=c(0.0, 0.0, 0.0),label=c("0.000 %
93 + (0.981)","0.000 %
94 + (0.964)","0.000 %
95 + (0.947)"),pos=3,offset=0.2)
96 > legend("topleft",legend=c("Genome","ChIP (p-value)"),col=c("#5FA1C1","#EB9D86"),pch=15,bty="n")
97 > r0<-c(0.03876062889120376, 0.03876062889120376)
98 > r1<-c(0.0, 0.0)
99 > height<-rbind(r0,r1)
100 > names=c("<=2500 bp","<=5000 bp")
101 > mp<-barplot(height=height,names=names,beside=TRUE,horiz=FALSE,col=c("#5FA1C1","#EB9D86"),main="Bidirectional Promoter",ylab="Percentage %",border=FALSE,ylim=c(0.000000,0.071061),cex.names=1)
102 > text(x=mp[1,],y=c(0.03876062889120376, 0.03876062889120376),label=c("0.04 %","0.04 %"),pos=3,offset=0.2)
103 > text(x=mp[2,],y=c(0.0, 0.0),label=c("0.000 %
104 + (1.000)","0.000 %
105 + (1.000)"),pos=3,offset=0.2)
106 > legend("topleft",legend=c("Genome","ChIP (p-value)"),col=c("#5FA1C1","#EB9D86"),pch=15,bty="n")
107 > r0<-c(1.8290171758036773, 3.4690762857627364, 4.980740812519683)
108 > r1<-c(0.0, 0.0, 0.0)
109 > height<-rbind(r0,r1)
110 > names=c("<=1000 bp","<=2000 bp","<=3000 bp")
111 > mp<-barplot(height=height,names=names,beside=TRUE,horiz=FALSE,col=c("#5FA1C1","#EB9D86"),main="Downstream",ylab="Percentage %",border=FALSE,ylim=c(0.000000,9.131358),cex.names=1)
112 > text(x=mp[1,],y=c(1.8290171758036773, 3.4690762857627364, 4.980740812519683),label=c("1.8 %","3.5 %","5.0 %"),pos=3,offset=0.2)
113 > text(x=mp[2,],y=c(0.0, 0.0, 0.0),label=c("0.000 %
114 + (0.982)","0.000 %
115 + (0.965)","0.000 %
116 + (0.950)"),pos=3,offset=0.2)
117 > legend("topleft",legend=c("Genome","ChIP (p-value)"),col=c("#5FA1C1","#EB9D86"),pch=15,bty="n")
118 > r0<-c(0.2034933016788197, 1.3978051793890356, 2.359553283752029, 19.734005184234114, 23.694856949054)
119 > r1<-c(0.0, 0.0, 0.0, 0.0, 0.0)
120 > height<-rbind(r0,r1)
121 > names=c("5'UTR","3'UTR","Coding Exon","Intron","All")
122 > mp<-barplot(height=height,names=names,beside=TRUE,horiz=FALSE,col=c("#5FA1C1","#EB9D86"),main="Gene",ylab="Percentage %",border=FALSE,ylim=c(0.000000,43.440571),cex.names=1)
123 > text(x=mp[1,],y=c(0.2034933016788197, 1.3978051793890356, 2.359553283752029, 19.734005184234114, 23.694856949054),label=c("0.2 %","1.4 %","2.4 %","19.7 %","23.7 %"),pos=3,offset=0.2)
124 > text(x=mp[2,],y=c(0.0, 0.0, 0.0, 0.0, 0.0),label=c("0.000 %
125 + (0.998)","0.000 %
126 + (0.986)","0.000 %
127 + (0.976)","0.000 %
128 + (0.803)","0.000 %
129 + (0.763)"),pos=3,offset=0.2)
130 > legend("topleft",legend=c("Genome","ChIP (p-value)"),col=c("#5FA1C1","#EB9D86"),pch=15,bty="n")
131 >
132 > #
133 > # Distribution of Genome and ChIP regions over cis-regulatory element
134 > # Note that the x may be modified for better graphics in case a value is too small
135 > # Thus, look at the labels of the pie chart to get the real percentage values
136 > #
137 >
138 > par(mfcol=c(2, 2),mar=c(3, 3, 4, 2.8),oma=c(4, 2, 4, 2))
139 > x<-c(0.018532,0.017055,0.016037,0.017830,0.015092,0.014051,0.010000,0.013833,0.023014,0.192592,0.670292)
140 > pie(x=x,labels=c("1.9 %","1.7 %","1.6 %","1.8 %","1.5 %","1.4 %","0.2 %","1.4 %","2.3 %","19.3 %","67.0 %"),main="Genome",col=c("#445FA2","#EB9D86","#799F7A","#6C527F","#5FA1C1","#E8BB77","#A8C5EF","#FDCDB9","#C6E6B5","#F1D5EE","#B4E1F6"),clockwise=TRUE,border=FALSE,radius=0.9,cex=0.8,init.angle=90,density=100)
141 > x<-c(0.000000,1.000000)
142 > y<-c(0.000000,1.000000)
143 > plot(x, y,type="n",main="",xlab="",ylab="",frame=FALSE,axes=FALSE,xaxt="s",yaxt="s")
144 > legend("top",legend=c("Promoter (<=1000 bp): 1.9 %","Promoter (1000-2000 bp): 1.7 %","Promoter (2000-3000 bp): 1.6 %","Downstream (<=1000 bp): 1.8 %","Downstream (1000-2000 bp): 1.5 %","Downstream (2000-3000 bp): 1.4 %","5'UTR: 0.2 %","3'UTR: 1.4 %","Coding exon: 2.3 %","Intron: 19.3 %","Distal intergenic: 67.0 %"),col=c("#445FA2","#EB9D86","#799F7A","#6C527F","#5FA1C1","#E8BB77","#A8C5EF","#FDCDB9","#C6E6B5","#F1D5EE","#B4E1F6"),pch=15,bty="n")
145 > x<-c(0.010000,0.010000,0.010000,0.010000,0.010000,0.010000,0.010000,0.010000,0.010000,0.010000,1.000000)
146 > pie(x=x,labels=c("0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","0.000 %","100.0 %"),main="ChIP",col=c("#445FA2","#EB9D86","#799F7A","#6C527F","#5FA1C1","#E8BB77","#A8C5EF","#FDCDB9","#C6E6B5","#F1D5EE","#B4E1F6"),clockwise=TRUE,border=FALSE,radius=0.9,cex=0.8,init.angle=90,density=100)
147 > x<-c(0.000000,1.000000)
148 > y<-c(0.000000,1.000000)
149 > plot(x, y,type="n",main="",xlab="",ylab="",frame=FALSE,axes=FALSE,xaxt="s",yaxt="s")
150 > legend("top",legend=c("Promoter (<=1000 bp): 0.000 %","Promoter (1000-2000 bp): 0.000 %","Promoter (2000-3000 bp): 0.000 %","Downstream (<=1000 bp): 0.000 %","Downstream (1000-2000 bp): 0.000 %","Downstream (2000-3000 bp): 0.000 %","5'UTR: 0.000 %","3'UTR: 0.000 %","Coding exon: 0.000 %","Intron: 0.000 %","Distal intergenic: 100.0 %"),col=c("#445FA2","#EB9D86","#799F7A","#6C527F","#5FA1C1","#E8BB77","#A8C5EF","#FDCDB9","#C6E6B5","#F1D5EE","#B4E1F6"),pch=15,bty="n")
151 >
152 > #
153 > # ChIP regions over the genome
154 > #
155 >
156 > par(mar=c(4, 4, 5, 3.8),oma=c(4, 2, 4, 2))
157 > layout(matrix(c(1, 0, 2, 2), 2, 2, byrow = TRUE),widths=c(1, 1),heights=c(1, 5))
158 > x<-c(0.000000,2.515610)
159 > y<-c(0.000000,1.000000)
160 > plot(x, y,type="n",main="Distribution of Peak Heights",xlab="",ylab="",xlim=c(0.000000,2.515610),ylim=c(0.000000,1.000000),frame=FALSE,xaxt="s",yaxt="n",cex=0.9)
161 > x<-c(0.000000,2.515610,2.515610,0.000000)
162 > y<-c(0.000000,0.000000,1.000000,1.000000)
163 > polygon(x,y,col=c("black"))
164 > x <- c(0.000000,0.169726,0.339451,0.509177,0.678903,0.848628,1.018354,1.188079,1.357805,1.527531,1.697256,1.866982,2.036708,2.206433,2.376159)
165 > y<-c(0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,0.800000)
166 > lines(x, y,xlim=c(0, 2.51561),ylim=c(0, 1),type="l",col=c("cyan"),lwd=2)
167 > x<-c(4119129.000000,4119130.000000)
168 > y<-c(0.855556,1.144444)
169 > plot(x, y,type="n",main="ChIP Regions (Peaks) over Chromosomes",xlab="Chromosome Size (bp)",ylab="Chromosome",xlim=c(4119129.000000,4119130.000000),ylim=c(0.855556,1.144444),frame=FALSE,xaxt="s",yaxt="n")
170 > start <- c(4119129)
171 > end <- c(4119130)
172 > vals <- c(2.51561)
173 > vals[vals > 2.51561] <- 2.51561
174 > vals[vals < 0] <- 0
175 > heights <- 0.288889 * ((vals - 0)/(2.51561 - 0)) + 0.855555555556
176 > for (i in 1:length(heights)) {
177 + polygon(x=c(start[i], end[i], end[i], start[i]), y=c(0.855555555556, 0.855555555556, heights[i], heights[i]), col=c("#CC0000"), border=c("#CC0000"))
178 + }
179 > mtext("26",side=2,line=0,outer=FALSE,at=1.0)
180 > dev.off()
181 null device
182 1
183 >
184 INFO @ Tue, 23 Jun 2015 09:12:22: #... cong! See ceas.pdf for the graphical results of CEAS!