# HG changeset patch # User q2d2 # Date 1661804665 0 # Node ID f65fffaaf19f9b7b7d6f138a6a2d4b577fd1cedb planemo upload for repository https://github.com/qiime2/galaxy-tools/tree/main/tools/suite_qiime2__sample_classifier commit 9023cfd83495a517fbcbb6f91d5b01a6f1afcda1 diff -r 000000000000 -r f65fffaaf19f qiime2__sample_classifier__classify_samples_ncv.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2__sample_classifier__classify_samples_ncv.xml Mon Aug 29 20:24:25 2022 +0000 @@ -0,0 +1,111 @@ + + + + + Nested cross-validated supervised learning classifier. + + quay.io/qiime2/core:2022.8 + + q2galaxy version sample_classifier + q2galaxy run sample_classifier classify_samples_ncv '$inputs' + + + + + + + + + hasattr(value.metadata, "semantic_type") and value.metadata.semantic_type in ['FeatureTable[Frequency]'] + + + + + + + + + + value != "1" + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+
+ + + + + + + +QIIME 2: sample-classifier classify-samples-ncv +=============================================== +Nested cross-validated supervised learning classifier. + + +Outputs: +-------- +:predictions.qza: Predicted target values for each input sample. +:feature_importance.qza: Importance of each input feature to model accuracy. +:probabilities.qza: Predicted class probabilities for each input sample. + +| + +Description: +------------ +Predicts a categorical sample metadata column using a supervised learning classifier. Uses nested stratified k-fold cross validation for automated hyperparameter optimization and sample prediction. Outputs predicted values for each input sample, and relative importance of each feature for model accuracy. + + +| + + + + 10.21105/joss.00934 + @article{cite2, + author = {Pedregosa, Fabian and Varoquaux, Gaël and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and Vanderplas, Jake and Passos, Alexandre and Cournapeau, David and Brucher, Matthieu and Perrot, Matthieu and Duchesnay, Édouard}, + journal = {Journal of machine learning research}, + number = {Oct}, + pages = {2825--2830}, + title = {Scikit-learn: Machine learning in Python}, + volume = {12}, + year = {2011} +} + + 10.1038/s41587-019-0209-9 + +
diff -r 000000000000 -r f65fffaaf19f test-data/.gitkeep