Mercurial > repos > rakesh4osdd > asist
comparison asist_dynamic.ipynb @ 0:c1a77856070c draft
"planemo upload for repository https://github.com/rakesh4osdd/asist/tree/master commit f5b374bef15145c893ffdd3a7d2f2978d8052184-dirty"
author | rakesh4osdd |
---|---|
date | Sat, 26 Jun 2021 07:27:53 +0000 |
parents | |
children | 3ea72fb2eaac |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c1a77856070c |
---|---|
1 { | |
2 "cells": [ | |
3 { | |
4 "cell_type": "code", | |
5 "execution_count": 1309, | |
6 "id": "27cfc66f", | |
7 "metadata": {}, | |
8 "outputs": [], | |
9 "source": [ | |
10 "#ASIST program for phenotype based on Antibiotics profile\n", | |
11 "# create a profile based on selected antibiotics only\n", | |
12 "# rakesh4osdd@gmail.com, 14-June-2021" | |
13 ] | |
14 }, | |
15 { | |
16 "cell_type": "code", | |
17 "execution_count": 1, | |
18 "id": "75a352b7", | |
19 "metadata": {}, | |
20 "outputs": [], | |
21 "source": [ | |
22 "import pandas as pd\n", | |
23 "import sys\n", | |
24 "import os\n", | |
25 "from collections import Counter" | |
26 ] | |
27 }, | |
28 { | |
29 "cell_type": "code", | |
30 "execution_count": 176, | |
31 "id": "d66ec0d2", | |
32 "metadata": {}, | |
33 "outputs": [], | |
34 "source": [ | |
35 "input_file=sys.argv[1]\n", | |
36 "output_file=sys.argv[2]\n", | |
37 "#input_file='test-data/asist_input.csv'\n", | |
38 "#output_file='test-data/asist_output.csv'" | |
39 ] | |
40 }, | |
41 { | |
42 "cell_type": "code", | |
43 "execution_count": 177, | |
44 "id": "bf24c946", | |
45 "metadata": {}, | |
46 "outputs": [], | |
47 "source": [ | |
48 "# strain_profile to phenotype condition\n", | |
49 "def s_phen(sus,res,intm,na,pb_sus):\n", | |
50 " if (sus>0 and res==0 and na>=0):\n", | |
51 " #print('Possible Susceptible')\n", | |
52 " phen='Possible Susceptible'\n", | |
53 " elif (sus>=0 and 3<=res<7 and na>=0 and pb_sus==0):\n", | |
54 " #print('Possible MDR')\n", | |
55 " phen='Possible MDR'\n", | |
56 " elif (sus>=0 and 7<=res<9 and na>=0 and pb_sus==0):\n", | |
57 " #print('Possible XDR')\n", | |
58 " phen='Possible XDR'\n", | |
59 " #special cases\n", | |
60 " elif (sus>=1 and res>0 and na>=0 and pb_sus==1):\n", | |
61 " #print('Possible XDR')\n", | |
62 " phen='Possible XDR'\n", | |
63 " #special cases\n", | |
64 " elif (sus>0 and res==9 and na>=0):\n", | |
65 " #print('Possible XDR')\n", | |
66 " phen='Possible XDR'\n", | |
67 " elif (sus==0 and res==9 and na>=0):\n", | |
68 " #print('Possible TDR')\n", | |
69 " phen='Possible TDR'\n", | |
70 " else:\n", | |
71 " #print('Strain could not be classified')\n", | |
72 " phen='Strain could not be classified ('+ str(intm)+' | ' + str(na) +')'\n", | |
73 " return(phen)\n", | |
74 "\n", | |
75 "#print(s_phen(1,9,0,0))" | |
76 ] | |
77 }, | |
78 { | |
79 "cell_type": "code", | |
80 "execution_count": 178, | |
81 "id": "8bad7d9d", | |
82 "metadata": {}, | |
83 "outputs": [], | |
84 "source": [ | |
85 "# define Antibiotic groups as per antibiotic of CLSI breakpoints MIC\n", | |
86 "#Aminoglycoside\n", | |
87 "cat1=['Amikacin','Tobramycin','Gentamycin','Netilmicin']\n", | |
88 "#Beta-lactams- Carbapenems\n", | |
89 "cat2=['Imipenem','Meropenam','Doripenem']\n", | |
90 "#Fluoroquinolone\n", | |
91 "cat3=['Ciprofloxacin','Levofloxacin']\n", | |
92 "#Beta-lactam inhibitor\n", | |
93 "cat4=['Piperacillin/tazobactam','Ticarcillin/clavulanicacid']\n", | |
94 "#Cephalosporin\n", | |
95 "cat5=['Cefotaxime','Ceftriaxone','Ceftazidime','Cefepime']\n", | |
96 "#Sulfonamides\n", | |
97 "cat6=['Trimethoprim/sulfamethoxazole']\n", | |
98 "#Penicillins/beta-lactamase\n", | |
99 "cat7=['Ampicillin/sulbactam']\n", | |
100 "#Polymyxins\n", | |
101 "cat8=['Colistin','Polymyxinb']\n", | |
102 "#Tetracycline\n", | |
103 "cat9=['Tetracycline','Doxicycline','Minocycline']\n", | |
104 "\n", | |
105 "def s_profiler(pd_series):\n", | |
106 " #print(type(pd_series),'\\n', pd_series)\n", | |
107 " #create a dictionary of dataframe series\n", | |
108 " cats={'s1':cat1,'s2':cat2,'s3':cat3,'s4':cat4,'s5':cat5,'s6':cat6,'s7':cat7,'s8':cat8,'s9':cat9}\n", | |
109 " # find the antibiotics name in input series\n", | |
110 " for cat in cats:\n", | |
111 " #print(cats[cat])\n", | |
112 " cats[cat]=pd_series.filter(cats[cat])\n", | |
113 " #print(cats[cat])\n", | |
114 " #define res,sus,intm,na,pb_sus\n", | |
115 " res=0\n", | |
116 " sus=0\n", | |
117 " intm=0\n", | |
118 " na=0\n", | |
119 " pb_sus=0\n", | |
120 " # special case of 'Polymyxin b' for its value\n", | |
121 " if 'Polymyxinb' in pd_series:\n", | |
122 " ctp=cats['s8']['Polymyxinb'].strip().lower()\n", | |
123 " if ctp == 'susceptible':\n", | |
124 " pb_sus=1\n", | |
125 " #print((ctp,p_sus))\n", | |
126 " # check all categories\n", | |
127 " for cat in cats:\n", | |
128 " #ctp=cats['s8'].iloc[i:i+1].stack().value_counts().to_dict()\n", | |
129 " #print(ctp)\n", | |
130 " # Pandas series\n", | |
131 " ct=cats[cat].value_counts().to_dict()\n", | |
132 " #print(ct)\n", | |
133 " # remove whitespace and convert to lowercase words\n", | |
134 " ct = {k.strip().lower(): v for k, v in ct.items()}\n", | |
135 " #print(ct)\n", | |
136 " k=Counter(ct)\n", | |
137 " #j=Counter(ct)+Counter(j)\n", | |
138 " #print(j)\n", | |
139 " # category wise marking\n", | |
140 " if k['resistant']>=1:\n", | |
141 " res=res+1\n", | |
142 " if k['susceptible']>=1:\n", | |
143 " sus=sus+1\n", | |
144 " if k['intermediate']>=1:\n", | |
145 " intm=intm+1\n", | |
146 " if k['na']>=1:\n", | |
147 " na=na+1\n", | |
148 " #print(sus,res,intm,na,pb_sus)\n", | |
149 " #print(s_phen(sus,res,intm,na,pb_sus))\n", | |
150 " return(s_phen(sus,res,intm,na,pb_sus))" | |
151 ] | |
152 }, | |
153 { | |
154 "cell_type": "code", | |
155 "execution_count": 179, | |
156 "id": "7629fc10", | |
157 "metadata": {}, | |
158 "outputs": [], | |
159 "source": [ | |
160 "#input_file='input2.csv_table.csv'\n", | |
161 "#output_file=input_file+'_output.txt'\n", | |
162 "strain_profile=pd.read_csv(input_file, sep=',',na_filter=False,skipinitialspace = True)" | |
163 ] | |
164 }, | |
165 { | |
166 "cell_type": "code", | |
167 "execution_count": 180, | |
168 "id": "bed1abba", | |
169 "metadata": {}, | |
170 "outputs": [], | |
171 "source": [ | |
172 "old_strain_name=strain_profile.columns[0]\n", | |
173 "new_strain_name=old_strain_name.capitalize().strip().replace(' ', '')" | |
174 ] | |
175 }, | |
176 { | |
177 "cell_type": "code", | |
178 "execution_count": 181, | |
179 "id": "a64b5022", | |
180 "metadata": {}, | |
181 "outputs": [], | |
182 "source": [ | |
183 "# make header capitalization, remove leading,lagging, and multiple whitespace for comparision\n", | |
184 "strain_profile.columns=strain_profile.columns.str.capitalize().str.strip().str.replace('\\s+', '', regex=True)\n", | |
185 "#print(strain_profile.columns)\n", | |
186 "#strain_profile.head()\n", | |
187 "#strain_profile.columns" | |
188 ] | |
189 }, | |
190 { | |
191 "cell_type": "code", | |
192 "execution_count": 182, | |
193 "id": "caac57d7", | |
194 "metadata": {}, | |
195 "outputs": [], | |
196 "source": [ | |
197 "# add new column in dataframe on second position\n", | |
198 "strain_profile.insert(1, 'Strain phenotype','')\n", | |
199 "#strain_profile.head()" | |
200 ] | |
201 }, | |
202 { | |
203 "cell_type": "code", | |
204 "execution_count": 183, | |
205 "id": "eb4b0c4d", | |
206 "metadata": { | |
207 "scrolled": true | |
208 }, | |
209 "outputs": [], | |
210 "source": [ | |
211 "strain_profile['Strain phenotype'] = strain_profile.apply(lambda x: (s_profiler(x)), axis=1)" | |
212 ] | |
213 }, | |
214 { | |
215 "cell_type": "code", | |
216 "execution_count": 184, | |
217 "id": "86441c0f", | |
218 "metadata": {}, | |
219 "outputs": [], | |
220 "source": [ | |
221 "#strain_profile.head()" | |
222 ] | |
223 }, | |
224 { | |
225 "cell_type": "code", | |
226 "execution_count": 185, | |
227 "id": "75698be5", | |
228 "metadata": {}, | |
229 "outputs": [], | |
230 "source": [ | |
231 "#rename headers for old name\n", | |
232 "strain_profile=strain_profile.rename(columns = {new_strain_name:old_strain_name, 'Ticarcillin/clavulanicacid':'Ticarcillin/ clavulanic acid','Piperacillin/tazobactam':'Piperacillin/ tazobactam','Trimethoprim/sulfamethoxazole': 'Trimethoprim/ sulfamethoxazole','Ampicillin/sulbactam':'Ampicillin/ sulbactam', 'Polymyxinb': 'Polymyxin B'} )" | |
233 ] | |
234 }, | |
235 { | |
236 "cell_type": "code", | |
237 "execution_count": 186, | |
238 "id": "c14a13eb", | |
239 "metadata": { | |
240 "scrolled": true | |
241 }, | |
242 "outputs": [], | |
243 "source": [ | |
244 "#strain_profile.columns" | |
245 ] | |
246 }, | |
247 { | |
248 "cell_type": "code", | |
249 "execution_count": 187, | |
250 "id": "ff484767", | |
251 "metadata": {}, | |
252 "outputs": [], | |
253 "source": [ | |
254 "#strain_profile" | |
255 ] | |
256 }, | |
257 { | |
258 "cell_type": "code", | |
259 "execution_count": 188, | |
260 "id": "5ab72211", | |
261 "metadata": {}, | |
262 "outputs": [], | |
263 "source": [ | |
264 "strain_profile.to_csv(output_file,na_rep='NA',index=False)" | |
265 ] | |
266 }, | |
267 { | |
268 "cell_type": "code", | |
269 "execution_count": 189, | |
270 "id": "020dbe85", | |
271 "metadata": {}, | |
272 "outputs": [], | |
273 "source": [ | |
274 "# Open a file with access mode 'a'\n", | |
275 "with open(output_file, \"a\") as file_object:\n", | |
276 " # Append 'hello' at the end of file\n", | |
277 " file_object.write(\"Note: \\n1. 'MDR': Multidrug-resistant, 'XDR': Extensively drug-resistant, 'TDR':totally drug resistant, NA': Data Not Available.\\n2. 'Strain could not be classified' numbers follow the format as ('Number of antibiotics categories count as Intermediate' | 'Number of antibiotics categories count as NA')\")" | |
278 ] | |
279 }, | |
280 { | |
281 "cell_type": "code", | |
282 "execution_count": null, | |
283 "id": "9c17e66a", | |
284 "metadata": {}, | |
285 "outputs": [], | |
286 "source": [] | |
287 } | |
288 ], | |
289 "metadata": { | |
290 "kernelspec": { | |
291 "display_name": "Python 3", | |
292 "language": "python", | |
293 "name": "python3" | |
294 }, | |
295 "language_info": { | |
296 "codemirror_mode": { | |
297 "name": "ipython", | |
298 "version": 3 | |
299 }, | |
300 "file_extension": ".py", | |
301 "mimetype": "text/x-python", | |
302 "name": "python", | |
303 "nbconvert_exporter": "python", | |
304 "pygments_lexer": "ipython3", | |
305 "version": "3.7.10" | |
306 } | |
307 }, | |
308 "nbformat": 4, | |
309 "nbformat_minor": 5 | |
310 } |