Mercurial > repos > recetox > matchms_spectral_similarity
view matchms_spectral_similarity.xml @ 18:7ba589b01dbc draft default tip
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/matchms commit 129488bfd91735fc55fe32edb1079c24eee7b2d3
author | recetox |
---|---|
date | Thu, 14 Nov 2024 15:07:35 +0000 |
parents | dbe94781524a |
children |
line wrap: on
line source
<tool id="matchms_spectral_similarity" name="matchms spectral similarity" version="@TOOL_VERSION@+galaxy0" profile="21.09"> <description>matchms spectral similarity calculation</description> <macros> <import>macros.xml</import> <import>help.xml</import> </macros> <expand macro="creator"/> <expand macro="bio.tools"/> <requirements> <requirement type="package" version="@TOOL_VERSION@">matchms</requirement> </requirements> <command detect_errors="exit_code"><![CDATA[ python3 ${python_wrapper} ]]> </command> <environment_variables> <environment_variable name="MPLCONFIGDIR">\$_GALAXY_JOB_TMP_DIR</environment_variable> </environment_variables> <configfiles> <configfile name="python_wrapper"> @init_logger@ from matchms.similarity import (CosineGreedy, CosineHungarian, MetadataMatch, ModifiedCosine, NeutralLossesCosine) similarity = ${similarity_metric}( ${algorithm.tolerance}, ${algorithm.mz_power}, ${algorithm.intensity_power} ) name="${similarity_metric}_${algorithm.tolerance}_${algorithm.mz_power}_${algorithm.intensity_power}" @init_scores@ #if $scores.use_scores == "True" layer = similarity.sparse_array( references=scores.references, queries=scores.queries, idx_row = scores._scores.row, idx_col = scores._scores.col, is_symmetric=False) scores._scores.add_sparse_data(scores._scores.row, scores._scores.col, layer, name) #else scores._scores = similarity.matrix( references=scores.references, queries=scores.queries, array_type="sparse", is_symmetric=False) scores._scores.data.dtype.names = [name+"_scores", name+"_matches"] #end if scores.filter_by_range(name=name+"_matches", low=0) scores.to_json("$similarity_scores") </configfile> </configfiles> <inputs> <expand macro="input_param"/> <param label="Similarity metric" name="similarity_metric" type="select" display="radio" help="Similarity metric to use for score computation."> <expand macro="similarity_metrics"/> </param> <expand macro="similarity_algorithm_params"/> </inputs> <outputs> <data label="$similarity_metric scores of ${on_string}" name="similarity_scores" format="json"/> </outputs> <tests> <test> <!-- TEST #1: Test scoring of the same file formats. --> <param name="references" value="similarity/RECETOX_Exposome_pesticides_HR_MS_20220323.msp" ftype="msp"/> <param name="queries" value="similarity/fill2.msp" ftype="msp"/> <param name="similarity_metric" value="CosineGreedy"/> <output name="similarity_scores" file="spectral_similarity/test1.json" ftype="json"/> </test> <test> <!-- TEST #2: Test scoring with scores as json. --> <param name="use_scores" value="True"/> <param name="scores_in" value="metadata_match/ri_match_60.json" ftype="json"/> <param name="similarity_metric" value="CosineHungarian"/> <output name="similarity_scores" file="spectral_similarity/test2.json" ftype="json"/> </test> </tests> <help> Description To compute the spectral similarity, only peaks matching another within the specified tolerance are used. Non-overlapping peaks do not contribute to the score computation. This spectrum vectorization can be interpreted as taking the intersection of spectra A and B. This is different from the NIST scoring algorithm which computes a weighted score computed for both spaces, A and B. For more details see this `galaxy training`_. .. rubric:: **Footnotes** .. [1] SQL join types explained on W3School_. .. _W3School: https://www.w3schools.com/sql/sql_join.asp .. _galaxy training: https://training.galaxyproject.org/training-material/topics/metabolomics/tutorials/gc_ms_with_xcms/tutorial.html @HELP_matchms@ </help> <expand macro="citations"/> </tool>