Mercurial > repos > recetox > recetox_aplcms_two_step_hybrid
comparison main.R @ 0:c67f0eb6a909 draft
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/recetox_aplcms commit b3e0c34f12c9c38fb34bf48197974620d60b50c5
author | recetox |
---|---|
date | Thu, 26 May 2022 16:47:09 +0000 |
parents | |
children | 87b669bdb51a |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:c67f0eb6a909 |
---|---|
1 library(recetox.aplcms) | |
2 library(dplyr) | |
3 | |
4 save_extracted_features <- function(df, filename) { | |
5 df <- as.data.frame(df) | |
6 columns <- c("mz", "pos", "sd1", "sd2", "area") | |
7 arrow::write_parquet(df[columns], filename) | |
8 } | |
9 | |
10 save_aligned_feature_table <- function(df, filename) { | |
11 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | |
12 arrow::write_parquet(df[columns], filename) | |
13 } | |
14 | |
15 save_recovered_feature_table <- function(df, filename, out_format) { | |
16 columns <- c("feature", "mz", "rt", "sample", "sample_rt", "sample_intensity") | |
17 if (out_format == "recetox") { | |
18 peak_table <- df[columns] | |
19 recetox_peak_table <- rcx_aplcms_to_rcx_xmsannotator(peak_table) | |
20 arrow::write_parquet(recetox_peak_table, filename) | |
21 } else { | |
22 arrow::write_parquet(df[columns], filename) | |
23 } | |
24 } | |
25 | |
26 rcx_aplcms_to_rcx_xmsannotator <- function(peak_table) { | |
27 col_base <- c("feature", "mz", "rt") | |
28 output_table <- peak_table %>% distinct(across(any_of(col_base))) | |
29 | |
30 for (level in levels(factor(peak_table$sample))) { | |
31 subdata <- peak_table %>% | |
32 filter(sample == level) %>% | |
33 select(any_of(c(col_base, "sample_intensity"))) %>% | |
34 rename(!!level := "sample_intensity") | |
35 output_table <- inner_join(output_table, subdata, by = col_base) | |
36 } | |
37 output_table <- output_table %>% rename(peak = feature) | |
38 return(output_table) | |
39 } | |
40 | |
41 known_table_columns <- function() { | |
42 c("chemical_formula", "HMDB_ID", "KEGG_compound_ID", "mass", "ion.type", | |
43 "m.z", "Number_profiles_processed", "Percent_found", "mz_min", "mz_max", | |
44 "RT_mean", "RT_sd", "RT_min", "RT_max", "int_mean(log)", "int_sd(log)", | |
45 "int_min(log)", "int_max(log)") | |
46 } | |
47 | |
48 save_known_table <- function(df, filename) { | |
49 columns <- known_table_columns() | |
50 arrow::write_parquet(df[columns], filename) | |
51 } | |
52 | |
53 read_known_table <- function(filename) { | |
54 arrow::read_parquet(filename, col_select = known_table_columns()) | |
55 } | |
56 | |
57 save_pairing <- function(df, filename) { | |
58 write.table(df, filename, row.names = FALSE, col.names = c("new", "old")) | |
59 } | |
60 | |
61 save_all_extracted_features <- function(dfs, filenames) { | |
62 filenames <- tools::file_path_sans_ext(basename(filenames)) | |
63 filenames <- paste0(filenames, ".parquet") | |
64 filenames <- file.path("extracted", filenames) | |
65 dir.create("extracted") | |
66 mapply(save_extracted_features, dfs, filenames) | |
67 } | |
68 | |
69 save_all_corrected_features <- function(dfs, filenames) { | |
70 filenames <- tools::file_path_sans_ext(basename(filenames)) | |
71 filenames <- paste0(filenames, ".parquet") | |
72 filenames <- file.path("corrected", filenames) | |
73 dir.create("corrected") | |
74 mapply(save_extracted_features, dfs, filenames) | |
75 } | |
76 | |
77 unsupervised_main <- function(sample_files, aligned_file, recovered_file, out_format, ...) { | |
78 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
79 | |
80 res <- unsupervised(filenames = sample_files, ...) | |
81 | |
82 save_all_extracted_features(res$extracted_features, sample_files) | |
83 save_all_corrected_features(res$corrected_features, sample_files) | |
84 | |
85 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) | |
86 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) | |
87 } | |
88 | |
89 hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, pairing_file, aligned_file, recovered_file, out_format, ...) { | |
90 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
91 | |
92 known <- read_known_table(known_table_file) | |
93 res <- hybrid(filenames = sample_files, known_table = known, ...) | |
94 | |
95 save_known_table(res$updated_known_table, updated_known_table_file) | |
96 save_pairing(res$features_known_table_pairing, pairing_file) | |
97 | |
98 save_all_extracted_features(res$extracted_features, sample_files) | |
99 save_all_corrected_features(res$corrected_features, sample_files) | |
100 | |
101 save_aligned_feature_table(res$aligned_feature_sample_table, aligned_file) | |
102 save_recovered_feature_table(res$recovered_feature_sample_table, recovered_file, out_format) | |
103 } | |
104 | |
105 two_step_hybrid_main <- function(sample_files, known_table_file, updated_known_table_file, recovered_file, aligned_file, out_format, metadata, ...) { | |
106 sample_files <- sort_samples_by_acquisition_number(sample_files) | |
107 metadata <- read.table(metadata, sep = ",", header = TRUE) | |
108 | |
109 known_table <- read_known_table(known_table_file) | |
110 res <- two.step.hybrid(filenames = sample_files, known.table = known_table, work_dir = getwd(), metadata = metadata, ...) | |
111 | |
112 save_known_table(res$known_table, updated_known_table_file) | |
113 save_aligned_feature_table(res$aligned_features, aligned_file) | |
114 save_recovered_feature_table(res$final_features, recovered_file, out_format) | |
115 } |