Mercurial > repos > recetox > waveica
view waveica_wrapper.R @ 7:1a2aeb8137bf draft
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/waveica commit 013d7c85fa9d77b8a27d194b350cd6b2d127a80f
author | recetox |
---|---|
date | Thu, 06 Jun 2024 12:25:05 +0000 |
parents | 071a424241ec |
children | bf32ae95a06f |
line wrap: on
line source
read_file <- function(file, metadata, ft_ext, mt_ext, transpose) { data <- read_data(file, ft_ext) if (transpose) { col_names <- c("sampleName", data[[1]]) data <- tranpose_data(data, col_names) } if (!is.na(metadata)) { mt_data <- read_data(metadata, mt_ext) data <- merge(mt_data, data, by = "sampleName") } return(data) } read_data <- function(file, ext) { if (ext == "csv") { data <- read.csv(file, header = TRUE) } else if (ext == "tsv") { data <- read.csv(file, header = TRUE, sep = "\t") } else { data <- arrow::read_parquet(file) } return(data) } waveica <- function(file, metadata = NA, ext, transpose = FALSE, wavelet_filter, wavelet_length, k, t, t2, alpha, exclude_blanks) { # get input from the Galaxy, preprocess data ext <- strsplit(x = ext, split = "\\,")[[1]] ft_ext <- ext[1] mt_ext <- ext[2] data <- read_file(file, metadata, ft_ext, mt_ext, transpose) required_columns <- c( "sampleName", "class", "sampleType", "injectionOrder", "batch" ) data <- verify_input_dataframe(data, required_columns) data <- sort_by_injection_order(data) # separate data into features, batch and group feature_columns <- colnames(data)[!colnames(data) %in% required_columns] features <- data[, feature_columns] group <- enumerate_groups(as.character(data$sampleType)) batch <- data$batch # run WaveICA features <- recetox.waveica::waveica( data = features, wf = get_wf(wavelet_filter, wavelet_length), batch = batch, group = group, K = k, t = t, t2 = t2, alpha = alpha ) data[, feature_columns] <- features # remove blanks from dataset if (exclude_blanks) { data <- exclude_group(data, group) } return(data) } waveica_singlebatch <- function(file, metadata = NA, ext, transpose = FALSE, wavelet_filter, wavelet_length, k, alpha, cutoff, exclude_blanks) { # get input from the Galaxy, preprocess data ext <- strsplit(x = ext, split = "\\,")[[1]] ft_ext <- ext[1] mt_ext <- ext[2] data <- read_file(file, metadata, ft_ext, mt_ext, transpose) required_columns <- c("sampleName", "class", "sampleType", "injectionOrder") optional_columns <- c("batch") data <- verify_input_dataframe(data, required_columns) data <- sort_by_injection_order(data) feature_columns <- colnames(data)[!colnames(data) %in% c(required_columns, optional_columns)] features <- data[, feature_columns] injection_order <- data$injectionOrder # run WaveICA features <- recetox.waveica::waveica_nonbatchwise( data = features, wf = get_wf(wavelet_filter, wavelet_length), injection_order = injection_order, K = k, alpha = alpha, cutoff = cutoff ) data[, feature_columns] <- features group <- enumerate_groups(as.character(data$sampleType)) # remove blanks from dataset if (exclude_blanks) { data <- exclude_group(data, group) } return(data) } sort_by_injection_order <- function(data) { if ("batch" %in% colnames(data)) { data <- data[order(data[, "batch"], data[, "injectionOrder"], decreasing = FALSE), ] } else { data <- data[order(data[, "injectionOrder"], decreasing = FALSE), ] } return(data) } verify_input_dataframe <- function(data, required_columns) { if (anyNA(data)) { stop("Error: dataframe cannot contain NULL values! Make sure that your dataframe does not contain empty cells") } else if (!all(required_columns %in% colnames(data))) { stop( "Error: missing metadata! Make sure that the following columns are present in your dataframe: ", paste(required_columns, collapse = ", ") ) } data <- verify_column_types(data, required_columns) return(data) } verify_column_types <- function(data, required_columns) { # Specify the column names and their expected types column_types <- list( "sampleName" = c("character", "factor"), "class" = c("character", "factor", "integer"), "sampleType" = c("character", "factor"), "injectionOrder" = "integer", "batch" = "integer" ) column_types <- column_types[required_columns] for (col_name in names(data)) { actual_type <- class(data[[col_name]]) if (col_name %in% names(column_types)) { expected_types <- column_types[[col_name]] if (!actual_type %in% expected_types) { stop( "Column ", col_name, " is of type ", actual_type, " but expected type is ", paste(expected_types, collapse = " or "), "\n" ) } } else { if (actual_type != "numeric") { data[[col_name]] <- as.numeric(as.character(data[[col_name]])) } } } return(data) } # Match group labels with [blank/sample/qc] and enumerate them enumerate_groups <- function(group) { group[grepl("blank", tolower(group))] <- 0 group[grepl("sample", tolower(group))] <- 1 group[grepl("qc", tolower(group))] <- 2 return(group) } # Create appropriate input for R wavelets function get_wf <- function(wavelet_filter, wavelet_length) { wf <- paste(wavelet_filter, wavelet_length, sep = "") # exception to the wavelet function if (wf == "d2") { wf <- "haar" } return(wf) } # Exclude blanks from a dataframe exclude_group <- function(data, group) { row_idx_to_exclude <- which(group %in% 0) if (length(row_idx_to_exclude) > 0) { data_without_blanks <- data[-c(row_idx_to_exclude), ] cat("Blank samples have been excluded from the dataframe.\n") return(data_without_blanks) } else { return(data) } } store_data <- function(data, feature_output, metadata_output, ext, split_output = FALSE) { if (ext == "parquet") { if (split_output == TRUE) { split_df <- split_output(data) arrow::write_parquet(split_df$metadata, metadata_output) arrow::write_parquet(split_df$feature_table, feature_output) } else { arrow::write_parquet(data, feature_output) } } else { if (split_output == TRUE) { split_df <- split_output(data) write.table(split_df$metadata, file = metadata_output, sep = "\t", row.names = FALSE, quote = FALSE ) write.table(split_df$feature_table, file = feature_output, sep = "\t", row.names = FALSE, quote = FALSE ) } else { write.table(data, file = feature_output, sep = "\t", row.names = FALSE, quote = FALSE ) } } cat("Normalization has been completed.\n") } split_output <- function(df) { required_columns_set1 <- c("sampleName", "class", "sampleType", "injectionOrder", "batch") required_columns_set2 <- c("sampleName", "class", "sampleType", "injectionOrder") if (all(required_columns_set1 %in% colnames(df))) { metadata_df <- df[, required_columns_set1, drop = FALSE] df <- df[, -c(2:5)] } else if (all(required_columns_set2 %in% colnames(df))) { metadata_df <- df[, required_columns_set2, drop = FALSE] df <- df[, -c(2:4)] } else { stop("Neither set of required columns is present in the dataframe.") } # Transpose the feature table col_names <- c("id", as.vector(df[[1]])) feature_table <- tranpose_data(df, col_names) return(list(metadata = metadata_df, feature_table = feature_table)) } tranpose_data <- function(data, column_names) { t_data <- data[-1] t_data <- t(t_data) tranposed_data <- data.frame(rownames(t_data), t_data) colnames(tranposed_data) <- column_names return(tranposed_data) }