Mercurial > repos > rnateam > graphclust_postprocessing
view evaluation.py @ 15:c7ca5d173482 draft
planemo upload for repository https://github.com/eteriSokhoyan/galaxytools/tree/branchForIterations/tools/GraphClust/CollectResults commit 6767a5ffb02052c844e9d862c79912f998f39d8e
author | rnateam |
---|---|
date | Mon, 20 Nov 2017 04:50:48 -0500 |
parents | b5f49453af8c |
children | 79df97a1bc0f |
line wrap: on
line source
#!/usr/bin/env python2 import glob from os import system import re from sklearn import metrics from shutil import make_archive def sh(script): system("bash -c '%s'" % script) dataNames = "FASTA/data.names" listOfClusters = [] listOfHeaders = [] headersNames = set() cluster_seqs_stats_path = "RESULTS/*.cluster.all" cluster_seqs_stats_files = glob.glob(cluster_seqs_stats_path) with open(dataNames, "r") as names: for line2 in names: splits2 = line2.split() fullHeader = '' if len(splits2) >= 6: fullHeader = splits2[5] headersNames.add(fullHeader) blackList = [] numberOfClusters = 0 for singleFile in sorted(cluster_seqs_stats_files): numberOfClusters += 1 with open(singleFile, "r") as f: for line in f: splits = line.split() header = '' if len(splits) >= 11: header = splits[10] clustNum = splits[2] listOfHeaders.append(header) listOfClusters.append(clustNum) if header in headersNames: blackList.append(header) numberOfClusters += 1 # 1 cluster for all unassigned seqs with open(dataNames, "r") as names: for line in names.readlines(): splits = line.split() fullUniqeId = splits[3] fullHeader = '' if len(splits) >= 6: fullHeader = line.split()[5] if fullHeader not in blackList or len(fullHeader) == 0: listOfHeaders.append(fullHeader) listOfClusters.append(str(numberOfClusters)) numberOfClusters += 1 # separate cluster for all unassigned seqs toWrite = "" for i in range(len(listOfClusters)): toWrite += listOfHeaders[i] + "\t" + listOfClusters[i] + '\n' with open("RESULTS/fullTab.tabular", "w") as full: full.write(toWrite) pattern = re.compile("^RF.*$") if len(listOfHeaders) > 1: # and pattern.match(str(listOfHeaders[0])): completeness_score = metrics.completeness_score(listOfHeaders, listOfClusters) homogeneity_score = metrics.homogeneity_score(listOfHeaders, listOfClusters) adjusted_rand_score = metrics.adjusted_rand_score(listOfHeaders, listOfClusters) adjusted_mutual_info_score = metrics.adjusted_mutual_info_score(listOfHeaders, listOfClusters) v_measure_score = metrics.v_measure_score(listOfHeaders, listOfClusters) toWrite = "completeness_score : " + str(completeness_score) + "\n" + "homogeneity_score : " + str(homogeneity_score) + "\n" + "adjusted_rand_score : " +str(adjusted_rand_score) + "\n" + "adjusted_mutual_info_score : " + str(adjusted_mutual_info_score)+ "\n" + "v_measure_score : " + str(v_measure_score) else: toWrite = "completeness_score : NA \nhomogeneity_score : NA \nadjusted_rand_score : NA \nadjusted_mutual_info_score : NA \nv_measure_score : NA" with open("RESULTS/evaluation.txt", "w") as fOut: fOut.write(toWrite) make_archive('RESULTS', 'zip', root_dir='RESULTS')