diff test-data/report.rbpbench_search.html @ 0:7dd2835ce566 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/rna_tools/rbpbench commit 0e21bd630200c1f199db8ba5d83b81d4214fc59f
author rnateam
date Sun, 03 Dec 2023 12:51:54 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/report.rbpbench_search.html	Sun Dec 03 12:51:54 2023 +0000
@@ -0,0 +1,83 @@
+<p><head>
+<title>RBPBench - Search Report</title></p>
+<script src="/home/uhlm/Programme/miniconda3/envs/rbpbench/lib/python3.11/site-packages/rbpbench/content/sorttable.js" type="text/javascript"></script>
+<p></head></p>
+<h1>Search report</h1>
+<p>List of available statistics and plots generated
+by RBPBench (rbpbench search --report):</p>
+<ul>
+<li><a href="#rbp-enrich-stats">RBP motif enrichment statistics</a></li>
+<li><a href="#cooc-heat-map">RBP co-occurrences heat map</a></li>
+<li><a href="#corr-heat-map">RBP correlations heat map</a>
+&nbsp;</li>
+</ul>
+<h2 id="rbp-enrich-stats">RBP motif enrichment statistics</h2>
+<p><strong>Table:</strong> RBP motif enrichment statistics. Given a score for each genomic region (# input regions = 1), 
+RBPbench checks whether motifs are enriched 
+in higher-scoring regions (using Wilcoxon rank-sum test). A low Wilcoxon rank-sum test p-value for a given RBP thus indicates 
+that higher-scoring regions are more likely to contain motif hits of the respective RBP. NOTE that if scores associated to 
+input genomic regions are all the same, p-values become meaningless (i.e., they result in p-values of 1.0).</p>
+<table class="sortable">
+<thead>
+<tr>
+<th style="text-align: center;">RBP ID</th>
+<th style="text-align: center;"># hit regions</th>
+<th style="text-align: center;">% hit regions</th>
+<th style="text-align: center;"># motif hits</th>
+<th style="text-align: center;">p-value</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td style="text-align: center;">PUM1</td>
+<td style="text-align: center;">1</td>
+<td style="text-align: center;">100.00</td>
+<td style="text-align: center;">1</td>
+<td style="text-align: center;">1.0</td>
+</tr>
+<tr>
+<td style="text-align: center;">PUM2</td>
+<td style="text-align: center;">1</td>
+<td style="text-align: center;">100.00</td>
+<td style="text-align: center;">4</td>
+<td style="text-align: center;">1.0</td>
+</tr>
+</tbody>
+</table>
+<p>&nbsp;
+&nbsp;</p>
+<p>Column IDs have the following meanings: <strong>RBP ID</strong> -&gt; RBP ID from database or user-defined (typically RBP name), <strong># hit regions</strong> -&gt; number of input genomic regions with motif hits (after filtering and optional extension), <strong>% hit regions</strong> -&gt; percentage of hit regions over all regions (i.e. how many input regions contain &gt;= 1 RBP binding motif), <strong># motif hits</strong> -&gt; number of unique motif hits in input regions (removed double counts), <strong>p-value</strong> -&gt; Wilcoxon rank-sum test p-value.</p>
+<h2 id="cooc-heat-map">RBP co-occurrences heat map</h2>
+<p>RBP co-occurrences heat map.</p>
+<div class=class="container-fluid" style="margin-top:40px">
+<iframe src="html_report_plots/co-occurrence_plot.plotly.html" width="1200" height="1200"></iframe>
+</div>
+
+<p><strong>Figure:</strong> Heat map of co-occurrences (Fisher's exact test p-values) between RBPs. 
+Legend color: negative logarithm (base 10) of Fisher's exact test p-value.
+Hover box: 1) RBP1. 2) RBP2. 3) p-value: Fisher's exact test p-value (calculated based on contingency table between RBP1 and RBP2). 
+4) RBPs compaired. 5) Counts[]: Contingency table of co-occurrence counts (i.e., number of genomic regions with/without shared motif hits) between compaired RBPs, 
+with format [[A, B], [C, D]], where 
+A: RBP1 AND RBP2, 
+B: NOT RBP1 AND RBP2
+C: RBP1 AND NOT RBP2
+D: NOT RBP1 AND NOT RBP2. </p>
+<p>&nbsp;</p>
+<h2 id="corr-heat-map">RBP correlations heat map</h2>
+<p>RBP correlations heat map.</p>
+<div class=class="container-fluid" style="margin-top:40px">
+<iframe src="html_report_plots/correlation_plot.plotly.html" width="1200" height="1200"></iframe>
+</div>
+
+<p><strong>Figure:</strong> Heat map of correlations (Pearson correlation coefficients) between RBPs. 
+Genomic regions are labelled 1 or 0 (RBP motif present or not), resulting in a vector of 1s and 0s for each RBP.
+Correlations are then calculated by comparing vectors for every pair of RBPs.
+Legend color: Pearson correlation coefficient. 
+Hover box: 1) RBP1. 2) RBP2.
+3) RBPs compaired. 5) Counts[]: Contingency table of co-occurrence counts (i.e., number of genomic regions with/without shared motif hits) between compaired RBPs, 
+with format [[A, B], [C, D]], where 
+A: RBP1 AND RBP2, 
+B: NOT RBP1 AND RBP2
+C: RBP1 AND NOT RBP2
+D: NOT RBP1 AND NOT RBP2. </p>
+<p>&nbsp;</p>