view test-data/report.rbpbench_search.html @ 2:26c64157456b draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/rna_tools/rbpbench commit 3bd486da76a7a55cc5a57cb88f446a11cbc3826d
author rnateam
date Mon, 11 Dec 2023 18:55:41 +0000
parents 7dd2835ce566
children
line wrap: on
line source

<p><head>
<title>RBPBench - Search Report</title></p>
<script src="/home/uhlm/Programme/miniconda3/envs/rbpbench/lib/python3.11/site-packages/rbpbench/content/sorttable.js" type="text/javascript"></script>
<p></head></p>
<h1>Search report</h1>
<p>List of available statistics and plots generated
by RBPBench (rbpbench search --report):</p>
<ul>
<li><a href="#rbp-enrich-stats">RBP motif enrichment statistics</a></li>
<li><a href="#cooc-heat-map">RBP co-occurrences heat map</a></li>
<li><a href="#corr-heat-map">RBP correlations heat map</a>
&nbsp;</li>
</ul>
<h2 id="rbp-enrich-stats">RBP motif enrichment statistics</h2>
<p><strong>Table:</strong> RBP motif enrichment statistics. Given a score for each genomic region (# input regions = 1), 
RBPbench checks whether motifs are enriched 
in higher-scoring regions (using Wilcoxon rank-sum test). A low Wilcoxon rank-sum test p-value for a given RBP thus indicates 
that higher-scoring regions are more likely to contain motif hits of the respective RBP. NOTE that if scores associated to 
input genomic regions are all the same, p-values become meaningless (i.e., they result in p-values of 1.0).</p>
<table class="sortable">
<thead>
<tr>
<th style="text-align: center;">RBP ID</th>
<th style="text-align: center;"># hit regions</th>
<th style="text-align: center;">% hit regions</th>
<th style="text-align: center;"># motif hits</th>
<th style="text-align: center;">p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center;">PUM1</td>
<td style="text-align: center;">1</td>
<td style="text-align: center;">100.00</td>
<td style="text-align: center;">1</td>
<td style="text-align: center;">1.0</td>
</tr>
<tr>
<td style="text-align: center;">PUM2</td>
<td style="text-align: center;">1</td>
<td style="text-align: center;">100.00</td>
<td style="text-align: center;">4</td>
<td style="text-align: center;">1.0</td>
</tr>
</tbody>
</table>
<p>&nbsp;
&nbsp;</p>
<p>Column IDs have the following meanings: <strong>RBP ID</strong> -&gt; RBP ID from database or user-defined (typically RBP name), <strong># hit regions</strong> -&gt; number of input genomic regions with motif hits (after filtering and optional extension), <strong>% hit regions</strong> -&gt; percentage of hit regions over all regions (i.e. how many input regions contain &gt;= 1 RBP binding motif), <strong># motif hits</strong> -&gt; number of unique motif hits in input regions (removed double counts), <strong>p-value</strong> -&gt; Wilcoxon rank-sum test p-value.</p>
<h2 id="cooc-heat-map">RBP co-occurrences heat map</h2>
<p>RBP co-occurrences heat map.</p>
<div class=class="container-fluid" style="margin-top:40px">
<iframe src="html_report_plots/co-occurrence_plot.plotly.html" width="1200" height="1200"></iframe>
</div>

<p><strong>Figure:</strong> Heat map of co-occurrences (Fisher's exact test p-values) between RBPs. 
Legend color: negative logarithm (base 10) of Fisher's exact test p-value.
Hover box: 1) RBP1. 2) RBP2. 3) p-value: Fisher's exact test p-value (calculated based on contingency table between RBP1 and RBP2). 
4) RBPs compaired. 5) Counts[]: Contingency table of co-occurrence counts (i.e., number of genomic regions with/without shared motif hits) between compaired RBPs, 
with format [[A, B], [C, D]], where 
A: RBP1 AND RBP2, 
B: NOT RBP1 AND RBP2
C: RBP1 AND NOT RBP2
D: NOT RBP1 AND NOT RBP2. </p>
<p>&nbsp;</p>
<h2 id="corr-heat-map">RBP correlations heat map</h2>
<p>RBP correlations heat map.</p>
<div class=class="container-fluid" style="margin-top:40px">
<iframe src="html_report_plots/correlation_plot.plotly.html" width="1200" height="1200"></iframe>
</div>

<p><strong>Figure:</strong> Heat map of correlations (Pearson correlation coefficients) between RBPs. 
Genomic regions are labelled 1 or 0 (RBP motif present or not), resulting in a vector of 1s and 0s for each RBP.
Correlations are then calculated by comparing vectors for every pair of RBPs.
Legend color: Pearson correlation coefficient. 
Hover box: 1) RBP1. 2) RBP2.
3) RBPs compaired. 5) Counts[]: Contingency table of co-occurrence counts (i.e., number of genomic regions with/without shared motif hits) between compaired RBPs, 
with format [[A, B], [C, D]], where 
A: RBP1 AND RBP2, 
B: NOT RBP1 AND RBP2
C: RBP1 AND NOT RBP2
D: NOT RBP1 AND NOT RBP2. </p>
<p>&nbsp;</p>