Mercurial > repos > rnateam > vienna_rna
view rnalfold.xml @ 3:04c56f5b0907 draft default tip
Uploaded
author | rnateam |
---|---|
date | Fri, 13 Feb 2015 04:08:49 -0500 |
parents | 5e58cbf27a05 |
children |
line wrap: on
line source
<tool id="rnalfold" name="RNALfold" version="2.1.6.0"> <description>calculates locally stable secondary structures of RNA</description> <expand macro="requirements" /> <expand macro="version_command" /> <expand macro="stdio" /> <macros> <token name="@EXECUTABLE@">RNALfold</token> <import>macros.xml</import> </macros> <command> <![CDATA[ RNALfold -L $span -T $temperature -d$dangling < $fasta_input | sed -r 's/(^[.()]*) +(\(.*\)) +(.*)/\1\t\2\t\3/' > $out_file #if $varExists('$advancedOptions.noconversion') #if $advancedOptions.noconversion --noconv #end if #if $advancedOptions.gquad --gquad #end if #if $advancedOptions.nolp --noLP #end if #if $advancedOptions.nogu --noGU #end if #if $advancedOptions.noclosinggu --noClosingGU #end if #if $advancedOptions.notetra --noTetra #end if #end if ]]> </command> <inputs> <param format="fasta" name="fasta_input" type="data" label="FASTA file"/> <param name="span" type="integer" min="0" max="5000" value="150" label="base pair span" help="Maximal distance between two paired bases. (-L)"/> <param name="temperature" size="6" type="float" value="37.0" label="Temperature [°C]" help="-T"/> <param name="dangling" type="select" label="how to treat dangling end energies" help="-d"> <option value="2" selected="true">unpaired bases participate in all dangling ends (2)</option> <option value="0">ignore dangling ends (0)</option> <option value="1">unpaired bases participate in one dangling end only (1)</option> <option value="3">allow coaxial stacking (3)</option> </param> <conditional name="advancedOptions"> <param name="advancedSelector" type="select" label="advanced options"> <option value="basic">basic Options</option> <option value="advanced">advanced Options</option> </param> <when value="advanced"> <param name="noconversion" type="boolean" checked="false" label="no conversion" help="--noconv do not convert thymine to uracile (T -> U)."/> <param name="gquad" type="boolean" checked="false" label="G Quadruplex formation" help="-g take into account G Quadruplex formation"/> <param name="nolp" type="boolean" checked="false" label="No lonely pairs" help="--noLP don't allow lonely pairs."/> <param name="nogu" type="boolean" checked="false" label="No GU pairing" help="--noGU don't allow pairing of G and U."/> <param name="noclosinggu" type="boolean" checked="false" label="No GU pairing at the ends" help="--noClosingGU don't allow pairing of G and U at the ends of helices."/> <param name="notetra" type="boolean" checked="false" label="No stabilization for loops, hairpins etc." help="--noTetra"/> </when> </conditional> </inputs> <outputs> <data format="txt" name="out_file"/> </outputs> <tests> <test> <param name="fasta_input" value="rnalfold_input1.fa"/> <output name="out_file" file="rnalfold_result1.txt"/> </test> </tests> <help> <![CDATA[ **RNALfold** Compute locally stable RNA secondary structure with a maximal base pair span. For a sequence of length n and a base pair span of L the algorithm uses only O(n+L*L) memory and O(n*L*L) CPU time. *Thus it is practical to "scan" very large genomes for short RNA structures*. Output consists of a list of secondary structure components of size <= L, one entry per line. Each output line contains the predicted local structure its energy in kcal/mol and the starting position of the local structure. ----- **Input format** - RNALfold requires one input file in FASTA format ------ **Outputs** - text output with dot-bracket notation and free energies of the secondary structures ]]> </help> <expand macro="requirements" /> </tool>