Mercurial > repos > rsajulga > proteomic_cravat_score_and_annotate
view cravat_submit.py @ 0:7ebdd4ac13a2 draft
Uploaded
author | rsajulga |
---|---|
date | Tue, 10 Apr 2018 15:53:55 -0400 |
parents | |
children | 676c8be98be4 |
line wrap: on
line source
import requests import json import time import urllib import sys import csv import re try: input_filename = sys.argv[1] input_select_bar = sys.argv[2] GRCh_build = sys.argv[3] psm_filename = sys.argv[4] output_filename = sys.argv[5] file_3 = sys.argv[6] file_4 = sys.argv[7] file_5 = sys.argv[8] except: input_filename = '1.) Galaxy2-[Human_Vcf_MCF7]-minimum.vcf' input_filename = 'input/[tgriffin_cguerrer_20160726_MCF7_RNAseq_01_S13_R1_001.vcf].vcf' input_select_bar = 'VEST' GRCh_build = 'GRCh38' output_filename = 'combined_variants.tsv' psm_filename = 'input/[ERLIC_MCF7_110kb_R123-CustomProDB_RNA-Seq_cRAP_DB.psm-report].tabular' file_3 = 'output/' + time.strftime("%H:%M") + '_Z_Gene_Level_Analysis.tsv' file_4 = 'output/' + time.strftime("%H:%M") + '_Z_Variant_Non-coding.Result.tsv' file_5 = 'output/' + time.strftime("%H:%M") + '_Z_Input_Errors.Result.tsv' #in_file = open('input_call.txt', "r") #out_file = open('output_call.txt', "w") write_header = True GRCh37hg19 = 'off' if GRCh_build == 'GRCh37': GRCh37hg19 = 'on' # http://staging.cravat.us/CRAVAT/rest/service/submit: #plugs in params to given URL submit = requests.post('http://staging.cravat.us/CRAVAT/rest/service/submit', files={'inputfile':open(input_filename)}, data={'email':'znylund@insilico.us.com', 'analyses': input_select_bar, 'hg19': GRCh37hg19}) #Makes the data a json dictionary, takes out only the job ID jobid = json.loads(submit.text)['jobid'] #out_file.write(jobid) submitted = json.loads(submit.text)['status'] #out_file.write('\t' + submitted) input_file = open(input_filename) is_comment_line = re.compile(".*#+.*") #loops until we find a status equal to Success, then breaks while True: check = requests.get('http://staging.cravat.us/CRAVAT/rest/service/status', params={'jobid': jobid}) status = json.loads(check.text)['status'] resultfileurl = json.loads(check.text)['resultfileurl'] #out_file.write(str(status) + ', ') if status == 'Success': #out_file.write('\t' + resultfileurl) break else: time.sleep(2) #out_file.write('\n') #creates three files file_1 = time.strftime("%H:%M") + '_Z_Variant_Result.tsv' file_2 = time.strftime("%H:%M") + '_Z_Additional_Details.tsv' #file_3 = time.strftime("%H:%M") + 'Combined_Variant_Results.tsv' #Download the two results urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant.Result.tsv", file_1) urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant_Additional_Details.Result.tsv", file_2) urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Gene_Level_Analysis.Result.tsv", file_3) urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant_Non-coding.Result.tsv", file_4) urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Input_Errors.Result.tsv", file_5) headers = [] duplicates = [] #opens the Variant Result file and the Variant Additional Details file as csv readers, then opens the output file (galaxy) as a writer with open(file_1) as tsvin_1, open(file_2) as tsvin_2, open(output_filename, 'wb') as tsvout: tsvreader_1 = csv.reader(tsvin_1, delimiter='\t') tsvreader_2 = csv.reader(tsvin_2, delimiter='\t') tsvout = csv.writer(tsvout, delimiter='\t') # Processes the PSM report if (psm_filename != 'None'): tsvin_3 = open(psm_filename) psmreader = csv.reader(tsvin_3, delimiter='\t') psmreader.next() peptide_map = {} s = re.compile('[A-Z][0-9]+[A-Z]') for row in psmreader: pro_name = row[1] pep_seq = row[2] prot_seq_changes = s.findall(pro_name) for change in prot_seq_changes: if change in peptide_map: if pep_seq not in peptide_map[change].split(';'): peptide_map[change] = peptide_map[change] + ';' + pep_seq else: peptide_map[change] = pep_seq #loops through each row in the Variant Additional Details file print 'Checkpoint 3' for row in tsvreader_2: #sets row_2 equal to the same row in Variant Result file row_2 = tsvreader_1.next() #checks if row is empty or if the first term contains '#' if row == [] or row[0][0] == '#': tsvout.writerow(row) else: #checks if the row begins with input line if row[0] == 'Input line': #Goes through each value in the headers list in VAD #print 'Original row' #print row #print row_2 for value in row: #Adds each value into headers headers.append(value) #Loops through the Keys in VR for value in row_2: #Checks if the value is already in headers if value in headers: continue #else adds the header to headers else: headers.append(value) if (psm_filename != 'None'): headers.insert(1, 'Peptide') #print headers tsvout.writerow(headers) else: cells = [] #Inserts a peptide column into the row if (psm_filename != 'None'): if row[12] in peptide_map: row.insert(1, peptide_map[row[12]]) else: row.insert(1, '') #Goes through each value in the next list for i,value in enumerate(row): #adds it to cells cells.append(value) #Goes through each value from the VR file after position 11 (After it is done repeating from VAD file) for i,value in enumerate(row_2[11:]): #adds in the rest of the values to cells # Skips the 2nd VEST p-value if (i != 49 - 11): cells.append(value) print cells tsvout.writerow(cells) #a = 'col1\tcol2\tcol3' #header_list = a.split('\t') #loop through the two results, when you first hit header you print out the headers in tabular form #Print out each header only once #Combine both headers into one output file #loop through the rest of the data and assign each value to its assigned header #combine this all into one output file