Mercurial > repos > shellac > guppy_basecaller
diff env/lib/python3.7/site-packages/planemo/galaxy/activity.py @ 0:26e78fe6e8c4 draft
"planemo upload commit c699937486c35866861690329de38ec1a5d9f783"
| author | shellac |
|---|---|
| date | Sat, 02 May 2020 07:14:21 -0400 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/env/lib/python3.7/site-packages/planemo/galaxy/activity.py Sat May 02 07:14:21 2020 -0400 @@ -0,0 +1,656 @@ +"""Module provides generic interface to running Galaxy tools and workflows.""" + +import json +import os +import tempfile +import time + +import bioblend +import requests +import yaml +from bioblend.galaxy.client import Client +from bioblend.util import attach_file +from galaxy.tool_util.cwl.util import ( + DirectoryUploadTarget, + FileUploadTarget, + galactic_job_json, + invocation_to_output, + output_properties, + output_to_cwl_json, + path_or_uri_to_uri, + tool_response_to_output, +) +from galaxy.tool_util.parser import get_tool_source +from galaxy.util import ( + safe_makedirs, + unicodify, +) + +from planemo.galaxy.api import summarize_history +from planemo.io import wait_on +from planemo.runnable import ( + ErrorRunResponse, + get_outputs, + RunnableType, + SuccessfulRunResponse, +) + +DEFAULT_HISTORY_NAME = "CWL Target History" +ERR_NO_SUCH_TOOL = ("Failed to find tool with ID [%s] in Galaxy - cannot execute job. " + "You may need to enable verbose logging and determine why the tool did not load. [%s]") + + +def execute(ctx, config, runnable, job_path, **kwds): + """Execute a Galaxy activity.""" + try: + return _execute(ctx, config, runnable, job_path, **kwds) + except Exception as e: + return ErrorRunResponse(unicodify(e)) + + +def _verified_tool_id(runnable, user_gi): + tool_id = _tool_id(runnable.path) + try: + user_gi.tools.show_tool(tool_id) + except Exception as e: + raise Exception(ERR_NO_SUCH_TOOL % (tool_id, e)) + return tool_id + + +def _inputs_representation(runnable): + if runnable.type == RunnableType.cwl_tool: + inputs_representation = "cwl" + else: + inputs_representation = "galaxy" + return inputs_representation + + +def log_contents_str(config): + if hasattr(config, "log_contents"): + return config.log_contents + else: + return "No log for this engine type." + + +def _execute(ctx, config, runnable, job_path, **kwds): + user_gi = config.user_gi + admin_gi = config.gi + + history_id = _history_id(user_gi, **kwds) + + job_dict, _ = stage_in(ctx, runnable, config, user_gi, history_id, job_path, **kwds) + + if runnable.type in [RunnableType.galaxy_tool, RunnableType.cwl_tool]: + response_class = GalaxyToolRunResponse + tool_id = _verified_tool_id(runnable, user_gi) + inputs_representation = _inputs_representation(runnable) + run_tool_payload = dict( + history_id=history_id, + tool_id=tool_id, + inputs=job_dict, + inputs_representation=inputs_representation, + ) + ctx.vlog("Post to Galaxy tool API with payload [%s]" % run_tool_payload) + tool_run_response = user_gi.tools._post(run_tool_payload) + + job = tool_run_response["jobs"][0] + job_id = job["id"] + try: + final_state = _wait_for_job(user_gi, job_id) + except Exception: + summarize_history(ctx, user_gi, history_id) + raise + if final_state != "ok": + msg = "Failed to run CWL tool job final job state is [%s]." % final_state + summarize_history(ctx, user_gi, history_id) + with open("errored_galaxy.log", "w") as f: + f.write(log_contents_str(config)) + raise Exception(msg) + + ctx.vlog("Final job state was ok, fetching details for job [%s]" % job_id) + job_info = admin_gi.jobs.show_job(job_id) + response_kwds = { + 'job_info': job_info, + 'api_run_response': tool_run_response, + } + if ctx.verbose: + summarize_history(ctx, user_gi, history_id) + elif runnable.type in [RunnableType.galaxy_workflow, RunnableType.cwl_workflow]: + response_class = GalaxyWorkflowRunResponse + workflow_id = config.workflow_id(runnable.path) + ctx.vlog("Found Galaxy workflow ID [%s] for path [%s]" % (workflow_id, runnable.path)) + # TODO: update bioblend to allow inputs_by. + # invocation = user_gi.worklfows.invoke_workflow( + # workflow_id, + # history_id=history_id, + # inputs=job_dict, + # ) + payload = dict( + workflow_id=workflow_id, + history_id=history_id, + inputs=job_dict, + inputs_by="name", + allow_tool_state_corrections=True, + ) + invocations_url = "%s/%s/invocations" % ( + user_gi._make_url(user_gi.workflows), + workflow_id, + ) + invocation = Client._post(user_gi.workflows, payload, url=invocations_url) + invocation_id = invocation["id"] + ctx.vlog("Waiting for invocation [%s]" % invocation_id) + polling_backoff = kwds.get("polling_backoff", 0) + try: + final_invocation_state = _wait_for_invocation(ctx, user_gi, history_id, workflow_id, invocation_id, polling_backoff) + except Exception: + ctx.vlog("Problem waiting on invocation...") + summarize_history(ctx, user_gi, history_id) + raise + ctx.vlog("Final invocation state is [%s]" % final_invocation_state) + final_state = _wait_for_history(ctx, user_gi, history_id, polling_backoff) + if final_state != "ok": + msg = "Failed to run workflow final history state is [%s]." % final_state + summarize_history(ctx, user_gi, history_id) + with open("errored_galaxy.log", "w") as f: + f.write(log_contents_str(config)) + raise Exception(msg) + ctx.vlog("Final history state is 'ok'") + response_kwds = { + 'workflow_id': workflow_id, + 'invocation_id': invocation_id, + } + else: + raise NotImplementedError() + + run_response = response_class( + ctx=ctx, + runnable=runnable, + user_gi=user_gi, + history_id=history_id, + log=log_contents_str(config), + **response_kwds + ) + output_directory = kwds.get("output_directory", None) + ctx.vlog("collecting outputs from run...") + run_response.collect_outputs(ctx, output_directory) + ctx.vlog("collecting outputs complete") + return run_response + + +def stage_in(ctx, runnable, config, user_gi, history_id, job_path, **kwds): + files_attached = [False] + + def upload_func(upload_target): + + def _attach_file(upload_payload, uri, index=0): + uri = path_or_uri_to_uri(uri) + is_path = uri.startswith("file://") + if not is_path or config.use_path_paste: + upload_payload["inputs"]["files_%d|url_paste" % index] = uri + else: + files_attached[0] = True + path = uri[len("file://"):] + upload_payload["files_%d|file_data" % index] = attach_file(path) + + if isinstance(upload_target, FileUploadTarget): + file_path = upload_target.path + upload_payload = user_gi.tools._upload_payload( + history_id, + file_type=upload_target.properties.get('filetype', None) or "auto", + ) + name = os.path.basename(file_path) + upload_payload["inputs"]["files_0|auto_decompress"] = False + upload_payload["inputs"]["auto_decompress"] = False + _attach_file(upload_payload, file_path) + upload_payload["inputs"]["files_0|NAME"] = name + if upload_target.secondary_files: + _attach_file(upload_payload, upload_target.secondary_files, index=1) + upload_payload["inputs"]["files_1|type"] = "upload_dataset" + upload_payload["inputs"]["files_1|auto_decompress"] = True + upload_payload["inputs"]["file_count"] = "2" + upload_payload["inputs"]["force_composite"] = "True" + + ctx.vlog("upload_payload is %s" % upload_payload) + return user_gi.tools._post(upload_payload, files_attached=files_attached[0]) + elif isinstance(upload_target, DirectoryUploadTarget): + tar_path = upload_target.tar_path + + upload_payload = user_gi.tools._upload_payload( + history_id, + file_type="tar", + ) + upload_payload["inputs"]["files_0|auto_decompress"] = False + _attach_file(upload_payload, tar_path) + tar_upload_response = user_gi.tools._post(upload_payload, files_attached=files_attached[0]) + convert_response = user_gi.tools.run_tool( + tool_id="CONVERTER_tar_to_directory", + tool_inputs={"input1": {"src": "hda", "id": tar_upload_response["outputs"][0]["id"]}}, + history_id=history_id, + ) + assert "outputs" in convert_response, convert_response + return convert_response + else: + content = json.dumps(upload_target.object) + return user_gi.tools.paste_content( + content, + history_id, + file_type="expression.json", + ) + + def create_collection_func(element_identifiers, collection_type): + payload = { + "name": "dataset collection", + "instance_type": "history", + "history_id": history_id, + "element_identifiers": element_identifiers, + "collection_type": collection_type, + "fields": None if collection_type != "record" else "auto", + } + dataset_collections_url = user_gi.url + "/dataset_collections" + dataset_collection = Client._post(user_gi.histories, payload, url=dataset_collections_url) + return dataset_collection + + with open(job_path, "r") as f: + job = yaml.safe_load(f) + + # Figure out what "." should be here instead. + job_dir = os.path.dirname(job_path) + job_dict, datasets = galactic_job_json( + job, + job_dir, + upload_func, + create_collection_func, + tool_or_workflow="tool" if runnable.type in [RunnableType.cwl_tool, RunnableType.galaxy_tool] else "workflow", + ) + + if datasets: + final_state = _wait_for_history(ctx, user_gi, history_id) + + for (dataset, path) in datasets: + dataset_details = user_gi.histories.show_dataset( + history_id, + dataset["id"], + ) + ctx.vlog("Uploaded dataset for path [%s] with metadata [%s]" % (path, dataset_details)) + else: + # Mark uploads as ok because nothing to do. + final_state = "ok" + + ctx.vlog("final state is %s" % final_state) + if final_state != "ok": + msg = "Failed to run job final job state is [%s]." % final_state + summarize_history(ctx, user_gi, history_id) + with open("errored_galaxy.log", "w") as f: + f.write(log_contents_str(config)) + raise Exception(msg) + + return job_dict, datasets + + +class GalaxyBaseRunResponse(SuccessfulRunResponse): + + def __init__( + self, + ctx, + runnable, + user_gi, + history_id, + log, + ): + self._ctx = ctx + self._runnable = runnable + self._user_gi = user_gi + self._history_id = history_id + self._log = log + + self._job_info = None + + self._outputs_dict = None + + def to_galaxy_output(self, output): + """Convert runnable output to a GalaxyOutput object. + + Subclasses for workflow and tool execution override this. + """ + raise NotImplementedError() + + def _get_extra_files(self, dataset_details): + extra_files_url = "%s/%s/contents/%s/extra_files" % ( + self._user_gi._make_url(self._user_gi.histories), self._history_id, dataset_details["id"] + ) + extra_files = Client._get(self._user_gi.jobs, url=extra_files_url) + return extra_files + + def _get_metadata(self, history_content_type, content_id): + if history_content_type == "dataset": + return self._user_gi.histories.show_dataset( + self._history_id, + content_id, + ) + elif history_content_type == "dataset_collection": + return self._user_gi.histories.show_dataset_collection( + self._history_id, + content_id, + ) + else: + raise Exception("Unknown history content type encountered [%s]" % history_content_type) + + def collect_outputs(self, ctx, output_directory): + assert self._outputs_dict is None, "collect_outputs pre-condition violated" + + outputs_dict = {} + if not output_directory: + # TODO: rather than creating a directory just use + # Galaxy paths if they are available in this + # configuration. + output_directory = tempfile.mkdtemp() + + def get_dataset(dataset_details, filename=None): + parent_basename = dataset_details.get("cwl_file_name") + if not parent_basename: + parent_basename = dataset_details.get("name") + file_ext = dataset_details["file_ext"] + if file_ext == "directory": + # TODO: rename output_directory to outputs_directory because we can have output directories + # and this is confusing... + the_output_directory = os.path.join(output_directory, parent_basename) + safe_makedirs(the_output_directory) + destination = self.download_output_to(dataset_details, the_output_directory, filename=filename) + else: + destination = self.download_output_to(dataset_details, output_directory, filename=filename) + if filename is None: + basename = parent_basename + else: + basename = os.path.basename(filename) + + return {"path": destination, "basename": basename} + + ctx.vlog("collecting outputs to directory %s" % output_directory) + for runnable_output in get_outputs(self._runnable): + output_id = runnable_output.get_id() + if not output_id: + ctx.vlog("Workflow output identified without an ID (label), skipping") + continue + output_dict_value = None + if self._runnable.type in [RunnableType.cwl_workflow, RunnableType.cwl_tool]: + galaxy_output = self.to_galaxy_output(runnable_output) + cwl_output = output_to_cwl_json( + galaxy_output, + self._get_metadata, + get_dataset, + self._get_extra_files, + pseduo_location=True, + ) + output_dict_value = cwl_output + else: + # TODO: deprecate this route for finding workflow outputs, + # it is a brittle and bad approach... + output_dataset_id = self.output_dataset_id(runnable_output) + dataset = self._get_metadata("dataset", output_dataset_id) + dataset_dict = get_dataset(dataset) + ctx.vlog("populated destination [%s]" % dataset_dict["path"]) + + if dataset["file_ext"] == "expression.json": + with open(dataset_dict["path"], "r") as f: + output_dict_value = json.load(f) + else: + output_dict_value = output_properties(**dataset_dict) + + outputs_dict[output_id] = output_dict_value + + self._outputs_dict = outputs_dict + ctx.vlog("collected outputs [%s]" % self._outputs_dict) + + @property + def log(self): + return self._log + + @property + def job_info(self): + if self._job_info is not None: + return dict( + stdout=self._job_info["stdout"], + stderr=self._job_info["stderr"], + command_line=self._job_info["command_line"], + ) + return None + + @property + def outputs_dict(self): + return self._outputs_dict + + def download_output_to(self, dataset_details, output_directory, filename=None): + if filename is None: + local_filename = dataset_details.get("cwl_file_name") or dataset_details.get("name") + else: + local_filename = filename + destination = os.path.join(output_directory, local_filename) + self._history_content_download( + self._history_id, + dataset_details["id"], + to_path=destination, + filename=filename, + ) + return destination + + def _history_content_download(self, history_id, dataset_id, to_path, filename=None): + user_gi = self._user_gi + url = user_gi.url + "/histories/%s/contents/%s/display" % (history_id, dataset_id) + + data = {} + if filename: + data["filename"] = filename + + r = requests.get(url, params=data, verify=user_gi.verify, stream=True, timeout=user_gi.timeout) + r.raise_for_status() + + with open(to_path, 'wb') as fp: + for chunk in r.iter_content(chunk_size=bioblend.CHUNK_SIZE): + if chunk: + fp.write(chunk) + + +class GalaxyToolRunResponse(GalaxyBaseRunResponse): + + def __init__( + self, + ctx, + runnable, + user_gi, + history_id, + log, + job_info, + api_run_response, + ): + super(GalaxyToolRunResponse, self).__init__( + ctx=ctx, + runnable=runnable, + user_gi=user_gi, + history_id=history_id, + log=log, + ) + self._job_info = job_info + self.api_run_response = api_run_response + + def is_collection(self, output): + # TODO: Make this more rigorous - search both output and output + # collections - throw an exception if not found in either place instead + # of just assuming all non-datasets are collections. + return self.output_dataset_id(output) is None + + def to_galaxy_output(self, runnable_output): + output_id = runnable_output.get_id() + return tool_response_to_output(self.api_run_response, self._history_id, output_id) + + def output_dataset_id(self, output): + outputs = self.api_run_response["outputs"] + output_id = output.get_id() + output_dataset_id = None + self._ctx.vlog("Looking for id [%s] in outputs [%s]" % (output_id, outputs)) + for output in outputs: + if output["output_name"] == output_id: + output_dataset_id = output["id"] + + return output_dataset_id + + +class GalaxyWorkflowRunResponse(GalaxyBaseRunResponse): + + def __init__( + self, + ctx, + runnable, + user_gi, + history_id, + log, + workflow_id, + invocation_id, + ): + super(GalaxyWorkflowRunResponse, self).__init__( + ctx=ctx, + runnable=runnable, + user_gi=user_gi, + history_id=history_id, + log=log, + ) + self._workflow_id = workflow_id + self._invocation_id = invocation_id + + def to_galaxy_output(self, runnable_output): + output_id = runnable_output.get_id() + self._ctx.vlog("checking for output in invocation [%s]" % self._invocation) + return invocation_to_output(self._invocation, self._history_id, output_id) + + def output_dataset_id(self, output): + invocation = self._invocation + if "outputs" in invocation: + # Use newer workflow outputs API. + + output_name = output.get_id() + if output_name in invocation["outputs"]: + return invocation["outputs"][output.get_id()]["id"] + else: + raise Exception("Failed to find output [%s] in invocation outputs [%s]" % (output_name, invocation["outputs"])) + else: + # Assume the output knows its order_index and such - older line of + # development not worth persuing. + workflow_output = output.workflow_output + order_index = workflow_output.order_index + + invocation_steps = invocation["steps"] + output_steps = [s for s in invocation_steps if s["order_index"] == order_index] + assert len(output_steps) == 1, "More than one step matching outputs, behavior undefined." + output_step = output_steps[0] + job_id = output_step["job_id"] + assert job_id, "Output doesn't define a job_id, behavior undefined." + job_info = self._user_gi.jobs.show_job(job_id, full_details=True) + job_outputs = job_info["outputs"] + output_name = workflow_output.output_name + assert output_name in job_outputs, "No output [%s] found for output job." + job_output = job_outputs[output_name] + assert "id" in job_output, "Job output [%s] does not contain 'id'." % job_output + return job_output["id"] + + @property + def _invocation(self): + invocation = self._user_gi.workflows.show_invocation( + self._workflow_id, + self._invocation_id, + ) + return invocation + + +def _tool_id(tool_path): + tool_source = get_tool_source(tool_path) + return tool_source.parse_id() + + +def _history_id(gi, **kwds): + history_id = kwds.get("history_id", None) + if history_id is None: + history_name = kwds.get("history_name", DEFAULT_HISTORY_NAME) + history_id = gi.histories.create_history(history_name)["id"] + return history_id + + +def _wait_for_invocation(ctx, gi, history_id, workflow_id, invocation_id, polling_backoff=0): + + def state_func(): + if _retry_on_timeouts(ctx, gi, lambda gi: has_jobs_in_states(gi, history_id, ["error", "deleted", "deleted_new"])): + raise Exception("Problem running workflow, one or more jobs failed.") + + return _retry_on_timeouts(ctx, gi, lambda gi: gi.workflows.show_invocation(workflow_id, invocation_id)) + + return _wait_on_state(state_func, polling_backoff) + + +def _retry_on_timeouts(ctx, gi, f): + gi.timeout = 60 + try_count = 5 + try: + for try_num in range(try_count): + start_time = time.time() + try: + return f(gi) + except Exception: + end_time = time.time() + if end_time - start_time > 45 and (try_num + 1) < try_count: + ctx.vlog("Galaxy seems to have timedout, retrying to fetch status.") + continue + else: + raise + finally: + gi.timeout = None + + +def has_jobs_in_states(gi, history_id, states): + params = {"history_id": history_id} + jobs_url = gi._make_url(gi.jobs) + jobs = Client._get(gi.jobs, params=params, url=jobs_url) + + target_jobs = [j for j in jobs if j["state"] in states] + + return len(target_jobs) > 0 + + +def _wait_for_history(ctx, gi, history_id, polling_backoff=0): + + def has_active_jobs(gi): + if has_jobs_in_states(gi, history_id, ["new", "upload", "waiting", "queued", "running"]): + return True + else: + return None + + timeout = 60 * 60 * 24 + wait_on(lambda: _retry_on_timeouts(ctx, gi, has_active_jobs), "active jobs", timeout, polling_backoff) + + def state_func(): + return _retry_on_timeouts(ctx, gi, lambda gi: gi.histories.show_history(history_id)) + + return _wait_on_state(state_func, polling_backoff) + + +def _wait_for_job(gi, job_id): + def state_func(): + return gi.jobs.show_job(job_id, full_details=True) + + return _wait_on_state(state_func) + + +def _wait_on_state(state_func, polling_backoff=0): + + def get_state(): + response = state_func() + state = response["state"] + if str(state) not in ["running", "queued", "new", "ready"]: + return state + else: + return None + timeout = 60 * 60 * 24 + final_state = wait_on(get_state, "state", timeout, polling_backoff) + return final_state + + +__all__ = ( + "execute", +)
