Mercurial > repos > shellac > sam_consensus_v3
comparison env/lib/python3.9/site-packages/networkx/linalg/modularitymatrix.py @ 0:4f3585e2f14b draft default tip
"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
| author | shellac |
|---|---|
| date | Mon, 22 Mar 2021 18:12:50 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:4f3585e2f14b |
|---|---|
| 1 """Modularity matrix of graphs. | |
| 2 """ | |
| 3 import networkx as nx | |
| 4 from networkx.utils import not_implemented_for | |
| 5 | |
| 6 __all__ = ["modularity_matrix", "directed_modularity_matrix"] | |
| 7 | |
| 8 | |
| 9 @not_implemented_for("directed") | |
| 10 @not_implemented_for("multigraph") | |
| 11 def modularity_matrix(G, nodelist=None, weight=None): | |
| 12 r"""Returns the modularity matrix of G. | |
| 13 | |
| 14 The modularity matrix is the matrix B = A - <A>, where A is the adjacency | |
| 15 matrix and <A> is the average adjacency matrix, assuming that the graph | |
| 16 is described by the configuration model. | |
| 17 | |
| 18 More specifically, the element B_ij of B is defined as | |
| 19 | |
| 20 .. math:: | |
| 21 A_{ij} - {k_i k_j \over 2 m} | |
| 22 | |
| 23 where k_i is the degree of node i, and where m is the number of edges | |
| 24 in the graph. When weight is set to a name of an attribute edge, Aij, k_i, | |
| 25 k_j and m are computed using its value. | |
| 26 | |
| 27 Parameters | |
| 28 ---------- | |
| 29 G : Graph | |
| 30 A NetworkX graph | |
| 31 | |
| 32 nodelist : list, optional | |
| 33 The rows and columns are ordered according to the nodes in nodelist. | |
| 34 If nodelist is None, then the ordering is produced by G.nodes(). | |
| 35 | |
| 36 weight : string or None, optional (default=None) | |
| 37 The edge attribute that holds the numerical value used for | |
| 38 the edge weight. If None then all edge weights are 1. | |
| 39 | |
| 40 Returns | |
| 41 ------- | |
| 42 B : Numpy matrix | |
| 43 The modularity matrix of G. | |
| 44 | |
| 45 Examples | |
| 46 -------- | |
| 47 >>> k = [3, 2, 2, 1, 0] | |
| 48 >>> G = nx.havel_hakimi_graph(k) | |
| 49 >>> B = nx.modularity_matrix(G) | |
| 50 | |
| 51 | |
| 52 See Also | |
| 53 -------- | |
| 54 to_numpy_array | |
| 55 modularity_spectrum | |
| 56 adjacency_matrix | |
| 57 directed_modularity_matrix | |
| 58 | |
| 59 References | |
| 60 ---------- | |
| 61 .. [1] M. E. J. Newman, "Modularity and community structure in networks", | |
| 62 Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006. | |
| 63 """ | |
| 64 if nodelist is None: | |
| 65 nodelist = list(G) | |
| 66 A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr") | |
| 67 k = A.sum(axis=1) | |
| 68 m = k.sum() * 0.5 | |
| 69 # Expected adjacency matrix | |
| 70 X = k * k.transpose() / (2 * m) | |
| 71 return A - X | |
| 72 | |
| 73 | |
| 74 @not_implemented_for("undirected") | |
| 75 @not_implemented_for("multigraph") | |
| 76 def directed_modularity_matrix(G, nodelist=None, weight=None): | |
| 77 """Returns the directed modularity matrix of G. | |
| 78 | |
| 79 The modularity matrix is the matrix B = A - <A>, where A is the adjacency | |
| 80 matrix and <A> is the expected adjacency matrix, assuming that the graph | |
| 81 is described by the configuration model. | |
| 82 | |
| 83 More specifically, the element B_ij of B is defined as | |
| 84 | |
| 85 .. math:: | |
| 86 B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m | |
| 87 | |
| 88 where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree | |
| 89 of node j, with m the number of edges in the graph. When weight is set | |
| 90 to a name of an attribute edge, Aij, k_i, k_j and m are computed using | |
| 91 its value. | |
| 92 | |
| 93 Parameters | |
| 94 ---------- | |
| 95 G : DiGraph | |
| 96 A NetworkX DiGraph | |
| 97 | |
| 98 nodelist : list, optional | |
| 99 The rows and columns are ordered according to the nodes in nodelist. | |
| 100 If nodelist is None, then the ordering is produced by G.nodes(). | |
| 101 | |
| 102 weight : string or None, optional (default=None) | |
| 103 The edge attribute that holds the numerical value used for | |
| 104 the edge weight. If None then all edge weights are 1. | |
| 105 | |
| 106 Returns | |
| 107 ------- | |
| 108 B : Numpy matrix | |
| 109 The modularity matrix of G. | |
| 110 | |
| 111 Examples | |
| 112 -------- | |
| 113 >>> G = nx.DiGraph() | |
| 114 >>> G.add_edges_from( | |
| 115 ... ( | |
| 116 ... (1, 2), | |
| 117 ... (1, 3), | |
| 118 ... (3, 1), | |
| 119 ... (3, 2), | |
| 120 ... (3, 5), | |
| 121 ... (4, 5), | |
| 122 ... (4, 6), | |
| 123 ... (5, 4), | |
| 124 ... (5, 6), | |
| 125 ... (6, 4), | |
| 126 ... ) | |
| 127 ... ) | |
| 128 >>> B = nx.directed_modularity_matrix(G) | |
| 129 | |
| 130 | |
| 131 Notes | |
| 132 ----- | |
| 133 NetworkX defines the element A_ij of the adjacency matrix as 1 if there | |
| 134 is a link going from node i to node j. Leicht and Newman use the opposite | |
| 135 definition. This explains the different expression for B_ij. | |
| 136 | |
| 137 See Also | |
| 138 -------- | |
| 139 to_numpy_array | |
| 140 modularity_spectrum | |
| 141 adjacency_matrix | |
| 142 modularity_matrix | |
| 143 | |
| 144 References | |
| 145 ---------- | |
| 146 .. [1] E. A. Leicht, M. E. J. Newman, | |
| 147 "Community structure in directed networks", | |
| 148 Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008. | |
| 149 """ | |
| 150 if nodelist is None: | |
| 151 nodelist = list(G) | |
| 152 A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr") | |
| 153 k_in = A.sum(axis=0) | |
| 154 k_out = A.sum(axis=1) | |
| 155 m = k_in.sum() | |
| 156 # Expected adjacency matrix | |
| 157 X = k_out * k_in / m | |
| 158 return A - X |
