### diff env/lib/python3.9/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py @ 0:4f3585e2f14bdraftdefaulttip

author shellac Mon, 22 Mar 2021 18:12:50 +0000
line wrap: on
line diff
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/env/lib/python3.9/site-packages/networkx/algorithms/bipartite/tests/test_cluster.py	Mon Mar 22 18:12:50 2021 +0000
@@ -0,0 +1,83 @@
+import networkx as nx
+import pytest
+from networkx.algorithms.bipartite.cluster import cc_dot, cc_min, cc_max
+import networkx.algorithms.bipartite as bipartite
+
+
+def test_pairwise_bipartite_cc_functions():
+    # Test functions for different kinds of bipartite clustering coefficients
+    # between pairs of nodes using 3 example graphs from figure 5 p. 40
+    # Latapy et al (2008)
+    G1 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7)])
+    G2 = nx.Graph([(0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (1, 5)])
+    G3 = nx.Graph(
+        [(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)]
+    )
+    result = {
+        0: [1 / 3.0, 2 / 3.0, 2 / 5.0],
+        1: [1 / 2.0, 2 / 3.0, 2 / 3.0],
+        2: [2 / 8.0, 2 / 5.0, 2 / 5.0],
+    }
+    for i, G in enumerate([G1, G2, G3]):
+        assert bipartite.is_bipartite(G)
+        assert cc_dot(set(G[0]), set(G[1])) == result[i][0]
+        assert cc_min(set(G[0]), set(G[1])) == result[i][1]
+        assert cc_max(set(G[0]), set(G[1])) == result[i][2]
+
+
+def test_star_graph():
+    G = nx.star_graph(3)
+    # all modes are the same
+    answer = {0: 0, 1: 1, 2: 1, 3: 1}
+    assert bipartite.clustering(G, mode="dot") == answer
+    assert bipartite.clustering(G, mode="min") == answer
+    assert bipartite.clustering(G, mode="max") == answer
+
+
+def test_not_bipartite():
+    with pytest.raises(nx.NetworkXError):
+        bipartite.clustering(nx.complete_graph(4))
+
+
+    with pytest.raises(nx.NetworkXError):
+        bipartite.clustering(nx.path_graph(4), mode="foo")
+
+
+def test_path_graph():
+    G = nx.path_graph(4)
+    answer = {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5}
+    assert bipartite.clustering(G, mode="dot") == answer
+    assert bipartite.clustering(G, mode="max") == answer
+    answer = {0: 1, 1: 1, 2: 1, 3: 1}
+    assert bipartite.clustering(G, mode="min") == answer
+
+
+def test_average_path_graph():
+    G = nx.path_graph(4)
+    assert bipartite.average_clustering(G, mode="dot") == 0.5
+    assert bipartite.average_clustering(G, mode="max") == 0.5
+    assert bipartite.average_clustering(G, mode="min") == 1
+
+
+def test_ra_clustering_davis():
+    G = nx.davis_southern_women_graph()
+    cc4 = round(bipartite.robins_alexander_clustering(G), 3)
+    assert cc4 == 0.468
+
+
+def test_ra_clustering_square():
+    G = nx.path_graph(4)