diff env/lib/python3.9/site-packages/networkx/classes/tests/test_multidigraph.py @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/env/lib/python3.9/site-packages/networkx/classes/tests/test_multidigraph.py	Mon Mar 22 18:12:50 2021 +0000
@@ -0,0 +1,399 @@
+import pytest
+from networkx.testing import assert_edges_equal
+import networkx as nx
+from .test_multigraph import BaseMultiGraphTester
+from .test_multigraph import TestMultiGraph as _TestMultiGraph
+from .test_multigraph import TestEdgeSubgraph as _TestMultiGraphEdgeSubgraph
+
+
+class BaseMultiDiGraphTester(BaseMultiGraphTester):
+    def test_edges(self):
+        G = self.K3
+        edges = [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.edges()) == edges
+        assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
+        pytest.raises((KeyError, nx.NetworkXError), G.edges, -1)
+
+    def test_edges_data(self):
+        G = self.K3
+        edges = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}), (2, 0, {}), (2, 1, {})]
+        assert sorted(G.edges(data=True)) == edges
+        assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
+        pytest.raises((KeyError, nx.NetworkXError), G.neighbors, -1)
+
+    def test_edges_multi(self):
+        G = self.K3
+        assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
+        G.add_edge(0, 1)
+        assert sorted(G.edges()) == [
+            (0, 1),
+            (0, 1),
+            (0, 2),
+            (1, 0),
+            (1, 2),
+            (2, 0),
+            (2, 1),
+        ]
+
+    def test_out_edges(self):
+        G = self.K3
+        assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
+        pytest.raises((KeyError, nx.NetworkXError), G.out_edges, -1)
+        assert sorted(G.out_edges(0, keys=True)) == [(0, 1, 0), (0, 2, 0)]
+
+    def test_out_edges_multi(self):
+        G = self.K3
+        assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
+        G.add_edge(0, 1, 2)
+        assert sorted(G.out_edges()) == [
+            (0, 1),
+            (0, 1),
+            (0, 2),
+            (1, 0),
+            (1, 2),
+            (2, 0),
+            (2, 1),
+        ]
+
+    def test_out_edges_data(self):
+        G = self.K3
+        assert sorted(G.edges(0, data=True)) == [(0, 1, {}), (0, 2, {})]
+        G.remove_edge(0, 1)
+        G.add_edge(0, 1, data=1)
+        assert sorted(G.edges(0, data=True)) == [(0, 1, {"data": 1}), (0, 2, {})]
+        assert sorted(G.edges(0, data="data")) == [(0, 1, 1), (0, 2, None)]
+        assert sorted(G.edges(0, data="data", default=-1)) == [(0, 1, 1), (0, 2, -1)]
+
+    def test_in_edges(self):
+        G = self.K3
+        assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
+        pytest.raises((KeyError, nx.NetworkXError), G.in_edges, -1)
+        G.add_edge(0, 1, 2)
+        assert sorted(G.in_edges()) == [
+            (0, 1),
+            (0, 1),
+            (0, 2),
+            (1, 0),
+            (1, 2),
+            (2, 0),
+            (2, 1),
+        ]
+        assert sorted(G.in_edges(0, keys=True)) == [(1, 0, 0), (2, 0, 0)]
+
+    def test_in_edges_no_keys(self):
+        G = self.K3
+        assert sorted(G.in_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
+        assert sorted(G.in_edges(0)) == [(1, 0), (2, 0)]
+        G.add_edge(0, 1, 2)
+        assert sorted(G.in_edges()) == [
+            (0, 1),
+            (0, 1),
+            (0, 2),
+            (1, 0),
+            (1, 2),
+            (2, 0),
+            (2, 1),
+        ]
+
+        assert sorted(G.in_edges(data=True, keys=False)) == [
+            (0, 1, {}),
+            (0, 1, {}),
+            (0, 2, {}),
+            (1, 0, {}),
+            (1, 2, {}),
+            (2, 0, {}),
+            (2, 1, {}),
+        ]
+
+    def test_in_edges_data(self):
+        G = self.K3
+        assert sorted(G.in_edges(0, data=True)) == [(1, 0, {}), (2, 0, {})]
+        G.remove_edge(1, 0)
+        G.add_edge(1, 0, data=1)
+        assert sorted(G.in_edges(0, data=True)) == [(1, 0, {"data": 1}), (2, 0, {})]
+        assert sorted(G.in_edges(0, data="data")) == [(1, 0, 1), (2, 0, None)]
+        assert sorted(G.in_edges(0, data="data", default=-1)) == [(1, 0, 1), (2, 0, -1)]
+
+    def is_shallow(self, H, G):
+        # graph
+        assert G.graph["foo"] == H.graph["foo"]
+        G.graph["foo"].append(1)
+        assert G.graph["foo"] == H.graph["foo"]
+        # node
+        assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
+        G.nodes[0]["foo"].append(1)
+        assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
+        # edge
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+        G[1][2][0]["foo"].append(1)
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+
+    def is_deep(self, H, G):
+        # graph
+        assert G.graph["foo"] == H.graph["foo"]
+        G.graph["foo"].append(1)
+        assert G.graph["foo"] != H.graph["foo"]
+        # node
+        assert G.nodes[0]["foo"] == H.nodes[0]["foo"]
+        G.nodes[0]["foo"].append(1)
+        assert G.nodes[0]["foo"] != H.nodes[0]["foo"]
+        # edge
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+        G[1][2][0]["foo"].append(1)
+        assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
+
+    def test_to_undirected(self):
+        # MultiDiGraph -> MultiGraph changes number of edges so it is
+        # not a copy operation... use is_shallow, not is_shallow_copy
+        G = self.K3
+        self.add_attributes(G)
+        H = nx.MultiGraph(G)
+        # self.is_shallow(H,G)
+        # the result is traversal order dependent so we
+        # can't use the is_shallow() test here.
+        try:
+            assert_edges_equal(H.edges(), [(0, 1), (1, 2), (2, 0)])
+        except AssertionError:
+            assert_edges_equal(H.edges(), [(0, 1), (1, 2), (1, 2), (2, 0)])
+        H = G.to_undirected()
+        self.is_deep(H, G)
+
+    def test_has_successor(self):
+        G = self.K3
+        assert G.has_successor(0, 1)
+        assert not G.has_successor(0, -1)
+
+    def test_successors(self):
+        G = self.K3
+        assert sorted(G.successors(0)) == [1, 2]
+        pytest.raises((KeyError, nx.NetworkXError), G.successors, -1)
+
+    def test_has_predecessor(self):
+        G = self.K3
+        assert G.has_predecessor(0, 1)
+        assert not G.has_predecessor(0, -1)
+
+    def test_predecessors(self):
+        G = self.K3
+        assert sorted(G.predecessors(0)) == [1, 2]
+        pytest.raises((KeyError, nx.NetworkXError), G.predecessors, -1)
+
+    def test_degree(self):
+        G = self.K3
+        assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
+        assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
+        assert G.degree(0) == 4
+        assert list(G.degree(iter([0]))) == [(0, 4)]
+        G.add_edge(0, 1, weight=0.3, other=1.2)
+        assert sorted(G.degree(weight="weight")) == [(0, 4.3), (1, 4.3), (2, 4)]
+        assert sorted(G.degree(weight="other")) == [(0, 5.2), (1, 5.2), (2, 4)]
+
+    def test_in_degree(self):
+        G = self.K3
+        assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
+        assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
+        assert G.in_degree(0) == 2
+        assert list(G.in_degree(iter([0]))) == [(0, 2)]
+        assert G.in_degree(0, weight="weight") == 2
+
+    def test_out_degree(self):
+        G = self.K3
+        assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
+        assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
+        assert G.out_degree(0) == 2
+        assert list(G.out_degree(iter([0]))) == [(0, 2)]
+        assert G.out_degree(0, weight="weight") == 2
+
+    def test_size(self):
+        G = self.K3
+        assert G.size() == 6
+        assert G.number_of_edges() == 6
+        G.add_edge(0, 1, weight=0.3, other=1.2)
+        assert round(G.size(weight="weight"), 2) == 6.3
+        assert round(G.size(weight="other"), 2) == 7.2
+
+    def test_to_undirected_reciprocal(self):
+        G = self.Graph()
+        G.add_edge(1, 2)
+        assert G.to_undirected().has_edge(1, 2)
+        assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
+        G.add_edge(2, 1)
+        assert G.to_undirected(reciprocal=True).has_edge(1, 2)
+
+    def test_reverse_copy(self):
+        G = nx.MultiDiGraph([(0, 1), (0, 1)])
+        R = G.reverse()
+        assert sorted(R.edges()) == [(1, 0), (1, 0)]
+        R.remove_edge(1, 0)
+        assert sorted(R.edges()) == [(1, 0)]
+        assert sorted(G.edges()) == [(0, 1), (0, 1)]
+
+    def test_reverse_nocopy(self):
+        G = nx.MultiDiGraph([(0, 1), (0, 1)])
+        R = G.reverse(copy=False)
+        assert sorted(R.edges()) == [(1, 0), (1, 0)]
+        pytest.raises(nx.NetworkXError, R.remove_edge, 1, 0)
+
+
+class TestMultiDiGraph(BaseMultiDiGraphTester, _TestMultiGraph):
+    def setup_method(self):
+        self.Graph = nx.MultiDiGraph
+        # build K3
+        self.k3edges = [(0, 1), (0, 2), (1, 2)]
+        self.k3nodes = [0, 1, 2]
+        self.K3 = self.Graph()
+        self.K3._adj = {0: {}, 1: {}, 2: {}}
+        self.K3._succ = self.K3._adj
+        self.K3._pred = {0: {}, 1: {}, 2: {}}
+        for u in self.k3nodes:
+            for v in self.k3nodes:
+                if u == v:
+                    continue
+                d = {0: {}}
+                self.K3._succ[u][v] = d
+                self.K3._pred[v][u] = d
+        self.K3._node = {}
+        self.K3._node[0] = {}
+        self.K3._node[1] = {}
+        self.K3._node[2] = {}
+
+    def test_add_edge(self):
+        G = self.Graph()
+        G.add_edge(0, 1)
+        assert G._adj == {0: {1: {0: {}}}, 1: {}}
+        assert G._succ == {0: {1: {0: {}}}, 1: {}}
+        assert G._pred == {0: {}, 1: {0: {0: {}}}}
+        G = self.Graph()
+        G.add_edge(*(0, 1))
+        assert G._adj == {0: {1: {0: {}}}, 1: {}}
+        assert G._succ == {0: {1: {0: {}}}, 1: {}}
+        assert G._pred == {0: {}, 1: {0: {0: {}}}}
+
+    def test_add_edges_from(self):
+        G = self.Graph()
+        G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
+        assert G._adj == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
+        assert G._succ == {0: {1: {0: {}, 1: {"weight": 3}}}, 1: {}}
+        assert G._pred == {0: {}, 1: {0: {0: {}, 1: {"weight": 3}}}}
+
+        G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
+        assert G._succ == {
+            0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+            1: {},
+        }
+        assert G._pred == {
+            0: {},
+            1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+        }
+
+        G = self.Graph()
+        edges = [
+            (0, 1, {"weight": 3}),
+            (0, 1, (("weight", 2),)),
+            (0, 1, 5),
+            (0, 1, "s"),
+        ]
+        G.add_edges_from(edges)
+        keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
+        assert G._succ == {0: {1: keydict}, 1: {}}
+        assert G._pred == {1: {0: keydict}, 0: {}}
+
+        # too few in tuple
+        pytest.raises(nx.NetworkXError, G.add_edges_from, [(0,)])
+        # too many in tuple
+        pytest.raises(nx.NetworkXError, G.add_edges_from, [(0, 1, 2, 3, 4)])
+        # not a tuple
+        pytest.raises(TypeError, G.add_edges_from, [0])
+
+    def test_remove_edge(self):
+        G = self.K3
+        G.remove_edge(0, 1)
+        assert G._succ == {
+            0: {2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        assert G._pred == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
+        pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, 0, 2, key=1)
+
+    def test_remove_multiedge(self):
+        G = self.K3
+        G.add_edge(0, 1, key="parallel edge")
+        G.remove_edge(0, 1, key="parallel edge")
+        assert G._adj == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+
+        assert G._succ == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+
+        assert G._pred == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        G.remove_edge(0, 1)
+        assert G._succ == {
+            0: {2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        assert G._pred == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        pytest.raises((KeyError, nx.NetworkXError), G.remove_edge, -1, 0)
+
+    def test_remove_edges_from(self):
+        G = self.K3
+        G.remove_edges_from([(0, 1)])
+        assert G._succ == {
+            0: {2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        assert G._pred == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        G.remove_edges_from([(0, 0)])  # silent fail
+
+
+class TestEdgeSubgraph(_TestMultiGraphEdgeSubgraph):
+    """Unit tests for the :meth:`MultiDiGraph.edge_subgraph` method."""
+
+    def setup_method(self):
+        # Create a quadruply-linked path graph on five nodes.
+        G = nx.MultiDiGraph()
+        nx.add_path(G, range(5))
+        nx.add_path(G, range(5))
+        nx.add_path(G, reversed(range(5)))
+        nx.add_path(G, reversed(range(5)))
+        # Add some node, edge, and graph attributes.
+        for i in range(5):
+            G.nodes[i]["name"] = f"node{i}"
+        G.adj[0][1][0]["name"] = "edge010"
+        G.adj[0][1][1]["name"] = "edge011"
+        G.adj[3][4][0]["name"] = "edge340"
+        G.adj[3][4][1]["name"] = "edge341"
+        G.graph["name"] = "graph"
+        # Get the subgraph induced by one of the first edges and one of
+        # the last edges.
+        self.G = G
+        self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])