diff env/lib/python3.9/site-packages/networkx/classes/tests/test_multigraph.py @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/env/lib/python3.9/site-packages/networkx/classes/tests/test_multigraph.py	Mon Mar 22 18:12:50 2021 +0000
@@ -0,0 +1,375 @@
+import pytest
+
+import networkx as nx
+from networkx.testing.utils import assert_edges_equal
+
+from .test_graph import BaseAttrGraphTester
+from .test_graph import TestGraph as _TestGraph
+
+
+class BaseMultiGraphTester(BaseAttrGraphTester):
+    def test_has_edge(self):
+        G = self.K3
+        assert G.has_edge(0, 1)
+        assert not G.has_edge(0, -1)
+        assert G.has_edge(0, 1, 0)
+        assert not G.has_edge(0, 1, 1)
+
+    def test_get_edge_data(self):
+        G = self.K3
+        assert G.get_edge_data(0, 1) == {0: {}}
+        assert G[0][1] == {0: {}}
+        assert G[0][1][0] == {}
+        assert G.get_edge_data(10, 20) is None
+        assert G.get_edge_data(0, 1, 0) == {}
+
+    def test_adjacency(self):
+        G = self.K3
+        assert dict(G.adjacency()) == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+
+    def deepcopy_edge_attr(self, H, G):
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+        G[1][2][0]["foo"].append(1)
+        assert G[1][2][0]["foo"] != H[1][2][0]["foo"]
+
+    def shallow_copy_edge_attr(self, H, G):
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+        G[1][2][0]["foo"].append(1)
+        assert G[1][2][0]["foo"] == H[1][2][0]["foo"]
+
+    def graphs_equal(self, H, G):
+        assert G._adj == H._adj
+        assert G._node == H._node
+        assert G.graph == H.graph
+        assert G.name == H.name
+        if not G.is_directed() and not H.is_directed():
+            assert H._adj[1][2][0] is H._adj[2][1][0]
+            assert G._adj[1][2][0] is G._adj[2][1][0]
+        else:  # at least one is directed
+            if not G.is_directed():
+                G._pred = G._adj
+                G._succ = G._adj
+            if not H.is_directed():
+                H._pred = H._adj
+                H._succ = H._adj
+            assert G._pred == H._pred
+            assert G._succ == H._succ
+            assert H._succ[1][2][0] is H._pred[2][1][0]
+            assert G._succ[1][2][0] is G._pred[2][1][0]
+
+    def same_attrdict(self, H, G):
+        # same attrdict in the edgedata
+        old_foo = H[1][2][0]["foo"]
+        H.adj[1][2][0]["foo"] = "baz"
+        assert G._adj == H._adj
+        H.adj[1][2][0]["foo"] = old_foo
+        assert G._adj == H._adj
+
+        old_foo = H.nodes[0]["foo"]
+        H.nodes[0]["foo"] = "baz"
+        assert G._node == H._node
+        H.nodes[0]["foo"] = old_foo
+        assert G._node == H._node
+
+    def different_attrdict(self, H, G):
+        # used by graph_equal_but_different
+        old_foo = H[1][2][0]["foo"]
+        H.adj[1][2][0]["foo"] = "baz"
+        assert G._adj != H._adj
+        H.adj[1][2][0]["foo"] = old_foo
+        assert G._adj == H._adj
+
+        old_foo = H.nodes[0]["foo"]
+        H.nodes[0]["foo"] = "baz"
+        assert G._node != H._node
+        H.nodes[0]["foo"] = old_foo
+        assert G._node == H._node
+
+    def test_to_undirected(self):
+        G = self.K3
+        self.add_attributes(G)
+        H = nx.MultiGraph(G)
+        self.is_shallow_copy(H, G)
+        H = G.to_undirected()
+        self.is_deepcopy(H, G)
+
+    def test_to_directed(self):
+        G = self.K3
+        self.add_attributes(G)
+        H = nx.MultiDiGraph(G)
+        self.is_shallow_copy(H, G)
+        H = G.to_directed()
+        self.is_deepcopy(H, G)
+
+    def test_number_of_edges_selfloops(self):
+        G = self.K3
+        G.add_edge(0, 0)
+        G.add_edge(0, 0)
+        G.add_edge(0, 0, key="parallel edge")
+        G.remove_edge(0, 0, key="parallel edge")
+        assert G.number_of_edges(0, 0) == 2
+        G.remove_edge(0, 0)
+        assert G.number_of_edges(0, 0) == 1
+
+    def test_edge_lookup(self):
+        G = self.Graph()
+        G.add_edge(1, 2, foo="bar")
+        G.add_edge(1, 2, "key", foo="biz")
+        assert_edges_equal(G.edges[1, 2, 0], {"foo": "bar"})
+        assert_edges_equal(G.edges[1, 2, "key"], {"foo": "biz"})
+
+    def test_edge_attr4(self):
+        G = self.Graph()
+        G.add_edge(1, 2, key=0, data=7, spam="bar", bar="foo")
+        assert_edges_equal(
+            G.edges(data=True), [(1, 2, {"data": 7, "spam": "bar", "bar": "foo"})]
+        )
+        G[1][2][0]["data"] = 10  # OK to set data like this
+        assert_edges_equal(
+            G.edges(data=True), [(1, 2, {"data": 10, "spam": "bar", "bar": "foo"})]
+        )
+
+        G.adj[1][2][0]["data"] = 20
+        assert_edges_equal(
+            G.edges(data=True), [(1, 2, {"data": 20, "spam": "bar", "bar": "foo"})]
+        )
+        G.edges[1, 2, 0]["data"] = 21  # another spelling, "edge"
+        assert_edges_equal(
+            G.edges(data=True), [(1, 2, {"data": 21, "spam": "bar", "bar": "foo"})]
+        )
+        G.adj[1][2][0]["listdata"] = [20, 200]
+        G.adj[1][2][0]["weight"] = 20
+        assert_edges_equal(
+            G.edges(data=True),
+            [
+                (
+                    1,
+                    2,
+                    {
+                        "data": 21,
+                        "spam": "bar",
+                        "bar": "foo",
+                        "listdata": [20, 200],
+                        "weight": 20,
+                    },
+                )
+            ],
+        )
+
+
+class TestMultiGraph(BaseMultiGraphTester, _TestGraph):
+    def setup_method(self):
+        self.Graph = nx.MultiGraph
+        # build K3
+        ed1, ed2, ed3 = ({0: {}}, {0: {}}, {0: {}})
+        self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed1, 2: ed3}, 2: {0: ed2, 1: ed3}}
+        self.k3edges = [(0, 1), (0, 2), (1, 2)]
+        self.k3nodes = [0, 1, 2]
+        self.K3 = self.Graph()
+        self.K3._adj = self.k3adj
+        self.K3._node = {}
+        self.K3._node[0] = {}
+        self.K3._node[1] = {}
+        self.K3._node[2] = {}
+
+    def test_data_input(self):
+        G = self.Graph({1: [2], 2: [1]}, name="test")
+        assert G.name == "test"
+        expected = [(1, {2: {0: {}}}), (2, {1: {0: {}}})]
+        assert sorted(G.adj.items()) == expected
+
+    def test_getitem(self):
+        G = self.K3
+        assert G[0] == {1: {0: {}}, 2: {0: {}}}
+        with pytest.raises(KeyError):
+            G.__getitem__("j")
+        with pytest.raises(TypeError):
+            G.__getitem__(["A"])
+
+    def test_remove_node(self):
+        G = self.K3
+        G.remove_node(0)
+        assert G.adj == {1: {2: {0: {}}}, 2: {1: {0: {}}}}
+        with pytest.raises(nx.NetworkXError):
+            G.remove_node(-1)
+
+    def test_add_edge(self):
+        G = self.Graph()
+        G.add_edge(0, 1)
+        assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
+        G = self.Graph()
+        G.add_edge(*(0, 1))
+        assert G.adj == {0: {1: {0: {}}}, 1: {0: {0: {}}}}
+
+    def test_add_edge_conflicting_key(self):
+        G = self.Graph()
+        G.add_edge(0, 1, key=1)
+        G.add_edge(0, 1)
+        assert G.number_of_edges() == 2
+        G = self.Graph()
+        G.add_edges_from([(0, 1, 1, {})])
+        G.add_edges_from([(0, 1)])
+        assert G.number_of_edges() == 2
+
+    def test_add_edges_from(self):
+        G = self.Graph()
+        G.add_edges_from([(0, 1), (0, 1, {"weight": 3})])
+        assert G.adj == {
+            0: {1: {0: {}, 1: {"weight": 3}}},
+            1: {0: {0: {}, 1: {"weight": 3}}},
+        }
+        G.add_edges_from([(0, 1), (0, 1, {"weight": 3})], weight=2)
+        assert G.adj == {
+            0: {1: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+            1: {0: {0: {}, 1: {"weight": 3}, 2: {"weight": 2}, 3: {"weight": 3}}},
+        }
+        G = self.Graph()
+        edges = [
+            (0, 1, {"weight": 3}),
+            (0, 1, (("weight", 2),)),
+            (0, 1, 5),
+            (0, 1, "s"),
+        ]
+        G.add_edges_from(edges)
+        keydict = {0: {"weight": 3}, 1: {"weight": 2}, 5: {}, "s": {}}
+        assert G._adj == {0: {1: keydict}, 1: {0: keydict}}
+
+        # too few in tuple
+        with pytest.raises(nx.NetworkXError):
+            G.add_edges_from([(0,)])
+        # too many in tuple
+        with pytest.raises(nx.NetworkXError):
+            G.add_edges_from([(0, 1, 2, 3, 4)])
+        # not a tuple
+        with pytest.raises(TypeError):
+            G.add_edges_from([0])
+
+    def test_remove_edge(self):
+        G = self.K3
+        G.remove_edge(0, 1)
+        assert G.adj == {0: {2: {0: {}}}, 1: {2: {0: {}}}, 2: {0: {0: {}}, 1: {0: {}}}}
+
+        with pytest.raises(nx.NetworkXError):
+            G.remove_edge(-1, 0)
+        with pytest.raises(nx.NetworkXError):
+            G.remove_edge(0, 2, key=1)
+
+    def test_remove_edges_from(self):
+        G = self.K3.copy()
+        G.remove_edges_from([(0, 1)])
+        kd = {0: {}}
+        assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
+        G.remove_edges_from([(0, 0)])  # silent fail
+        self.K3.add_edge(0, 1)
+        G = self.K3.copy()
+        G.remove_edges_from(list(G.edges(data=True, keys=True)))
+        assert G.adj == {0: {}, 1: {}, 2: {}}
+        G = self.K3.copy()
+        G.remove_edges_from(list(G.edges(data=False, keys=True)))
+        assert G.adj == {0: {}, 1: {}, 2: {}}
+        G = self.K3.copy()
+        G.remove_edges_from(list(G.edges(data=False, keys=False)))
+        assert G.adj == {0: {}, 1: {}, 2: {}}
+        G = self.K3.copy()
+        G.remove_edges_from([(0, 1, 0), (0, 2, 0, {}), (1, 2)])
+        assert G.adj == {0: {1: {1: {}}}, 1: {0: {1: {}}}, 2: {}}
+
+    def test_remove_multiedge(self):
+        G = self.K3
+        G.add_edge(0, 1, key="parallel edge")
+        G.remove_edge(0, 1, key="parallel edge")
+        assert G.adj == {
+            0: {1: {0: {}}, 2: {0: {}}},
+            1: {0: {0: {}}, 2: {0: {}}},
+            2: {0: {0: {}}, 1: {0: {}}},
+        }
+        G.remove_edge(0, 1)
+        kd = {0: {}}
+        assert G.adj == {0: {2: kd}, 1: {2: kd}, 2: {0: kd, 1: kd}}
+        with pytest.raises(nx.NetworkXError):
+            G.remove_edge(-1, 0)
+
+
+class TestEdgeSubgraph:
+    """Unit tests for the :meth:`MultiGraph.edge_subgraph` method."""
+
+    def setup_method(self):
+        # Create a doubly-linked path graph on five nodes.
+        G = nx.MultiGraph()
+        nx.add_path(G, range(5))
+        nx.add_path(G, range(5))
+        # Add some node, edge, and graph attributes.
+        for i in range(5):
+            G.nodes[i]["name"] = f"node{i}"
+        G.adj[0][1][0]["name"] = "edge010"
+        G.adj[0][1][1]["name"] = "edge011"
+        G.adj[3][4][0]["name"] = "edge340"
+        G.adj[3][4][1]["name"] = "edge341"
+        G.graph["name"] = "graph"
+        # Get the subgraph induced by one of the first edges and one of
+        # the last edges.
+        self.G = G
+        self.H = G.edge_subgraph([(0, 1, 0), (3, 4, 1)])
+
+    def test_correct_nodes(self):
+        """Tests that the subgraph has the correct nodes."""
+        assert [0, 1, 3, 4] == sorted(self.H.nodes())
+
+    def test_correct_edges(self):
+        """Tests that the subgraph has the correct edges."""
+        assert [(0, 1, 0, "edge010"), (3, 4, 1, "edge341")] == sorted(
+            self.H.edges(keys=True, data="name")
+        )
+
+    def test_add_node(self):
+        """Tests that adding a node to the original graph does not
+        affect the nodes of the subgraph.
+
+        """
+        self.G.add_node(5)
+        assert [0, 1, 3, 4] == sorted(self.H.nodes())
+
+    def test_remove_node(self):
+        """Tests that removing a node in the original graph does
+        affect the nodes of the subgraph.
+
+        """
+        self.G.remove_node(0)
+        assert [1, 3, 4] == sorted(self.H.nodes())
+
+    def test_node_attr_dict(self):
+        """Tests that the node attribute dictionary of the two graphs is
+        the same object.
+
+        """
+        for v in self.H:
+            assert self.G.nodes[v] == self.H.nodes[v]
+        # Making a change to G should make a change in H and vice versa.
+        self.G.nodes[0]["name"] = "foo"
+        assert self.G.nodes[0] == self.H.nodes[0]
+        self.H.nodes[1]["name"] = "bar"
+        assert self.G.nodes[1] == self.H.nodes[1]
+
+    def test_edge_attr_dict(self):
+        """Tests that the edge attribute dictionary of the two graphs is
+        the same object.
+
+        """
+        for u, v, k in self.H.edges(keys=True):
+            assert self.G._adj[u][v][k] == self.H._adj[u][v][k]
+        # Making a change to G should make a change in H and vice versa.
+        self.G._adj[0][1][0]["name"] = "foo"
+        assert self.G._adj[0][1][0]["name"] == self.H._adj[0][1][0]["name"]
+        self.H._adj[3][4][1]["name"] = "bar"
+        assert self.G._adj[3][4][1]["name"] == self.H._adj[3][4][1]["name"]
+
+    def test_graph_attr_dict(self):
+        """Tests that the graph attribute dictionary of the two graphs
+        is the same object.
+
+        """
+        assert self.G.graph is self.H.graph