diff env/lib/python3.9/site-packages/networkx/tests/test_convert_numpy.py @ 0:4f3585e2f14b draft default tip

"planemo upload commit 60cee0fc7c0cda8592644e1aad72851dec82c959"
author shellac
date Mon, 22 Mar 2021 18:12:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/env/lib/python3.9/site-packages/networkx/tests/test_convert_numpy.py	Mon Mar 22 18:12:50 2021 +0000
@@ -0,0 +1,434 @@
+import pytest
+
+np = pytest.importorskip("numpy")
+np_assert_equal = np.testing.assert_equal
+
+import networkx as nx
+from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
+from networkx.testing.utils import assert_graphs_equal
+
+
+class TestConvertNumpy:
+    def setup_method(self):
+        self.G1 = barbell_graph(10, 3)
+        self.G2 = cycle_graph(10, create_using=nx.DiGraph)
+
+        self.G3 = self.create_weighted(nx.Graph())
+        self.G4 = self.create_weighted(nx.DiGraph())
+
+    def test_exceptions(self):
+        G = np.array("a")
+        pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G)
+
+    def create_weighted(self, G):
+        g = cycle_graph(4)
+        G.add_nodes_from(g)
+        G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
+        return G
+
+    def assert_equal(self, G1, G2):
+        assert sorted(G1.nodes()) == sorted(G2.nodes())
+        assert sorted(G1.edges()) == sorted(G2.edges())
+
+    def identity_conversion(self, G, A, create_using):
+        assert A.sum() > 0
+        GG = nx.from_numpy_matrix(A, create_using=create_using)
+        self.assert_equal(G, GG)
+        GW = nx.to_networkx_graph(A, create_using=create_using)
+        self.assert_equal(G, GW)
+        GI = nx.empty_graph(0, create_using).__class__(A)
+        self.assert_equal(G, GI)
+
+    def test_shape(self):
+        "Conversion from non-square array."
+        A = np.array([[1, 2, 3], [4, 5, 6]])
+        pytest.raises(nx.NetworkXError, nx.from_numpy_matrix, A)
+
+    def test_identity_graph_matrix(self):
+        "Conversion from graph to matrix to graph."
+        A = nx.to_numpy_matrix(self.G1)
+        self.identity_conversion(self.G1, A, nx.Graph())
+
+    def test_identity_graph_array(self):
+        "Conversion from graph to array to graph."
+        A = nx.to_numpy_matrix(self.G1)
+        A = np.asarray(A)
+        self.identity_conversion(self.G1, A, nx.Graph())
+
+    def test_identity_digraph_matrix(self):
+        """Conversion from digraph to matrix to digraph."""
+        A = nx.to_numpy_matrix(self.G2)
+        self.identity_conversion(self.G2, A, nx.DiGraph())
+
+    def test_identity_digraph_array(self):
+        """Conversion from digraph to array to digraph."""
+        A = nx.to_numpy_matrix(self.G2)
+        A = np.asarray(A)
+        self.identity_conversion(self.G2, A, nx.DiGraph())
+
+    def test_identity_weighted_graph_matrix(self):
+        """Conversion from weighted graph to matrix to weighted graph."""
+        A = nx.to_numpy_matrix(self.G3)
+        self.identity_conversion(self.G3, A, nx.Graph())
+
+    def test_identity_weighted_graph_array(self):
+        """Conversion from weighted graph to array to weighted graph."""
+        A = nx.to_numpy_matrix(self.G3)
+        A = np.asarray(A)
+        self.identity_conversion(self.G3, A, nx.Graph())
+
+    def test_identity_weighted_digraph_matrix(self):
+        """Conversion from weighted digraph to matrix to weighted digraph."""
+        A = nx.to_numpy_matrix(self.G4)
+        self.identity_conversion(self.G4, A, nx.DiGraph())
+
+    def test_identity_weighted_digraph_array(self):
+        """Conversion from weighted digraph to array to weighted digraph."""
+        A = nx.to_numpy_matrix(self.G4)
+        A = np.asarray(A)
+        self.identity_conversion(self.G4, A, nx.DiGraph())
+
+    def test_nodelist(self):
+        """Conversion from graph to matrix to graph with nodelist."""
+        P4 = path_graph(4)
+        P3 = path_graph(3)
+        nodelist = list(P3)
+        A = nx.to_numpy_matrix(P4, nodelist=nodelist)
+        GA = nx.Graph(A)
+        self.assert_equal(GA, P3)
+
+        # Make nodelist ambiguous by containing duplicates.
+        nodelist += [nodelist[0]]
+        pytest.raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist)
+
+    def test_weight_keyword(self):
+        WP4 = nx.Graph()
+        WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3))
+        P4 = path_graph(4)
+        A = nx.to_numpy_matrix(P4)
+        np_assert_equal(A, nx.to_numpy_matrix(WP4, weight=None))
+        np_assert_equal(0.5 * A, nx.to_numpy_matrix(WP4))
+        np_assert_equal(0.3 * A, nx.to_numpy_matrix(WP4, weight="other"))
+
+    def test_from_numpy_matrix_type(self):
+        A = np.matrix([[1]])
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == int
+
+        A = np.matrix([[1]]).astype(np.float)
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == float
+
+        A = np.matrix([[1]]).astype(np.str)
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == str
+
+        A = np.matrix([[1]]).astype(np.bool)
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == bool
+
+        A = np.matrix([[1]]).astype(np.complex)
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == complex
+
+        A = np.matrix([[1]]).astype(np.object)
+        pytest.raises(TypeError, nx.from_numpy_matrix, A)
+
+        G = nx.cycle_graph(3)
+        A = nx.adj_matrix(G).todense()
+        H = nx.from_numpy_matrix(A)
+        assert all(type(m) == int and type(n) == int for m, n in H.edges())
+        H = nx.from_numpy_array(A)
+        assert all(type(m) == int and type(n) == int for m, n in H.edges())
+
+    def test_from_numpy_matrix_dtype(self):
+        dt = [("weight", float), ("cost", int)]
+        A = np.matrix([[(1.0, 2)]], dtype=dt)
+        G = nx.from_numpy_matrix(A)
+        assert type(G[0][0]["weight"]) == float
+        assert type(G[0][0]["cost"]) == int
+        assert G[0][0]["cost"] == 2
+        assert G[0][0]["weight"] == 1.0
+
+    def test_to_numpy_recarray(self):
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=7.0, cost=5)
+        A = nx.to_numpy_recarray(G, dtype=[("weight", float), ("cost", int)])
+        assert sorted(A.dtype.names) == ["cost", "weight"]
+        assert A.weight[0, 1] == 7.0
+        assert A.weight[0, 0] == 0.0
+        assert A.cost[0, 1] == 5
+        assert A.cost[0, 0] == 0
+
+    def test_numpy_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, weight=7)
+        G.add_edge(1, 2, weight=70)
+        A = nx.to_numpy_matrix(G)
+        assert A[1, 0] == 77
+        A = nx.to_numpy_matrix(G, multigraph_weight=min)
+        assert A[1, 0] == 7
+        A = nx.to_numpy_matrix(G, multigraph_weight=max)
+        assert A[1, 0] == 70
+
+    def test_from_numpy_matrix_parallel_edges(self):
+        """Tests that the :func:`networkx.from_numpy_matrix` function
+        interprets integer weights as the number of parallel edges when
+        creating a multigraph.
+
+        """
+        A = np.matrix([[1, 1], [1, 2]])
+        # First, with a simple graph, each integer entry in the adjacency
+        # matrix is interpreted as the weight of a single edge in the graph.
+        expected = nx.DiGraph()
+        edges = [(0, 0), (0, 1), (1, 0)]
+        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+        expected.add_edge(1, 1, weight=2)
+        actual = nx.from_numpy_matrix(A, parallel_edges=True, create_using=nx.DiGraph)
+        assert_graphs_equal(actual, expected)
+        actual = nx.from_numpy_matrix(A, parallel_edges=False, create_using=nx.DiGraph)
+        assert_graphs_equal(actual, expected)
+        # Now each integer entry in the adjacency matrix is interpreted as the
+        # number of parallel edges in the graph if the appropriate keyword
+        # argument is specified.
+        edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
+        expected = nx.MultiDiGraph()
+        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+        actual = nx.from_numpy_matrix(
+            A, parallel_edges=True, create_using=nx.MultiDiGraph
+        )
+        assert_graphs_equal(actual, expected)
+        expected = nx.MultiDiGraph()
+        expected.add_edges_from(set(edges), weight=1)
+        # The sole self-loop (edge 0) on vertex 1 should have weight 2.
+        expected[1][1][0]["weight"] = 2
+        actual = nx.from_numpy_matrix(
+            A, parallel_edges=False, create_using=nx.MultiDiGraph
+        )
+        assert_graphs_equal(actual, expected)
+
+    def test_symmetric(self):
+        """Tests that a symmetric matrix has edges added only once to an
+        undirected multigraph when using :func:`networkx.from_numpy_matrix`.
+
+        """
+        A = np.matrix([[0, 1], [1, 0]])
+        G = nx.from_numpy_matrix(A, create_using=nx.MultiGraph)
+        expected = nx.MultiGraph()
+        expected.add_edge(0, 1, weight=1)
+        assert_graphs_equal(G, expected)
+
+    def test_dtype_int_graph(self):
+        """Test that setting dtype int actually gives an integer matrix.
+
+        For more information, see GitHub pull request #1363.
+
+        """
+        G = nx.complete_graph(3)
+        A = nx.to_numpy_matrix(G, dtype=int)
+        assert A.dtype == int
+
+    def test_dtype_int_multigraph(self):
+        """Test that setting dtype int actually gives an integer matrix.
+
+        For more information, see GitHub pull request #1363.
+
+        """
+        G = nx.MultiGraph(nx.complete_graph(3))
+        A = nx.to_numpy_matrix(G, dtype=int)
+        assert A.dtype == int
+
+
+class TestConvertNumpyArray:
+    def setup_method(self):
+        self.G1 = barbell_graph(10, 3)
+        self.G2 = cycle_graph(10, create_using=nx.DiGraph)
+        self.G3 = self.create_weighted(nx.Graph())
+        self.G4 = self.create_weighted(nx.DiGraph())
+
+    def create_weighted(self, G):
+        g = cycle_graph(4)
+        G.add_nodes_from(g)
+        G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
+        return G
+
+    def assert_equal(self, G1, G2):
+        assert sorted(G1.nodes()) == sorted(G2.nodes())
+        assert sorted(G1.edges()) == sorted(G2.edges())
+
+    def identity_conversion(self, G, A, create_using):
+        assert A.sum() > 0
+        GG = nx.from_numpy_array(A, create_using=create_using)
+        self.assert_equal(G, GG)
+        GW = nx.to_networkx_graph(A, create_using=create_using)
+        self.assert_equal(G, GW)
+        GI = nx.empty_graph(0, create_using).__class__(A)
+        self.assert_equal(G, GI)
+
+    def test_shape(self):
+        "Conversion from non-square array."
+        A = np.array([[1, 2, 3], [4, 5, 6]])
+        pytest.raises(nx.NetworkXError, nx.from_numpy_array, A)
+
+    def test_identity_graph_array(self):
+        "Conversion from graph to array to graph."
+        A = nx.to_numpy_array(self.G1)
+        self.identity_conversion(self.G1, A, nx.Graph())
+
+    def test_identity_digraph_array(self):
+        """Conversion from digraph to array to digraph."""
+        A = nx.to_numpy_array(self.G2)
+        self.identity_conversion(self.G2, A, nx.DiGraph())
+
+    def test_identity_weighted_graph_array(self):
+        """Conversion from weighted graph to array to weighted graph."""
+        A = nx.to_numpy_array(self.G3)
+        self.identity_conversion(self.G3, A, nx.Graph())
+
+    def test_identity_weighted_digraph_array(self):
+        """Conversion from weighted digraph to array to weighted digraph."""
+        A = nx.to_numpy_array(self.G4)
+        self.identity_conversion(self.G4, A, nx.DiGraph())
+
+    def test_nodelist(self):
+        """Conversion from graph to array to graph with nodelist."""
+        P4 = path_graph(4)
+        P3 = path_graph(3)
+        nodelist = list(P3)
+        A = nx.to_numpy_array(P4, nodelist=nodelist)
+        GA = nx.Graph(A)
+        self.assert_equal(GA, P3)
+
+        # Make nodelist ambiguous by containing duplicates.
+        nodelist += [nodelist[0]]
+        pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
+
+    def test_weight_keyword(self):
+        WP4 = nx.Graph()
+        WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3))
+        P4 = path_graph(4)
+        A = nx.to_numpy_array(P4)
+        np_assert_equal(A, nx.to_numpy_array(WP4, weight=None))
+        np_assert_equal(0.5 * A, nx.to_numpy_array(WP4))
+        np_assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other"))
+
+    def test_from_numpy_array_type(self):
+        A = np.array([[1]])
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == int
+
+        A = np.array([[1]]).astype(np.float)
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == float
+
+        A = np.array([[1]]).astype(np.str)
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == str
+
+        A = np.array([[1]]).astype(np.bool)
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == bool
+
+        A = np.array([[1]]).astype(np.complex)
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == complex
+
+        A = np.array([[1]]).astype(np.object)
+        pytest.raises(TypeError, nx.from_numpy_array, A)
+
+    def test_from_numpy_array_dtype(self):
+        dt = [("weight", float), ("cost", int)]
+        A = np.array([[(1.0, 2)]], dtype=dt)
+        G = nx.from_numpy_array(A)
+        assert type(G[0][0]["weight"]) == float
+        assert type(G[0][0]["cost"]) == int
+        assert G[0][0]["cost"] == 2
+        assert G[0][0]["weight"] == 1.0
+
+    def test_to_numpy_recarray(self):
+        G = nx.Graph()
+        G.add_edge(1, 2, weight=7.0, cost=5)
+        A = nx.to_numpy_recarray(G, dtype=[("weight", float), ("cost", int)])
+        assert sorted(A.dtype.names) == ["cost", "weight"]
+        assert A.weight[0, 1] == 7.0
+        assert A.weight[0, 0] == 0.0
+        assert A.cost[0, 1] == 5
+        assert A.cost[0, 0] == 0
+
+    def test_numpy_multigraph(self):
+        G = nx.MultiGraph()
+        G.add_edge(1, 2, weight=7)
+        G.add_edge(1, 2, weight=70)
+        A = nx.to_numpy_array(G)
+        assert A[1, 0] == 77
+        A = nx.to_numpy_array(G, multigraph_weight=min)
+        assert A[1, 0] == 7
+        A = nx.to_numpy_array(G, multigraph_weight=max)
+        assert A[1, 0] == 70
+
+    def test_from_numpy_array_parallel_edges(self):
+        """Tests that the :func:`networkx.from_numpy_array` function
+        interprets integer weights as the number of parallel edges when
+        creating a multigraph.
+
+        """
+        A = np.array([[1, 1], [1, 2]])
+        # First, with a simple graph, each integer entry in the adjacency
+        # matrix is interpreted as the weight of a single edge in the graph.
+        expected = nx.DiGraph()
+        edges = [(0, 0), (0, 1), (1, 0)]
+        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+        expected.add_edge(1, 1, weight=2)
+        actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph)
+        assert_graphs_equal(actual, expected)
+        actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph)
+        assert_graphs_equal(actual, expected)
+        # Now each integer entry in the adjacency matrix is interpreted as the
+        # number of parallel edges in the graph if the appropriate keyword
+        # argument is specified.
+        edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
+        expected = nx.MultiDiGraph()
+        expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+        actual = nx.from_numpy_array(
+            A, parallel_edges=True, create_using=nx.MultiDiGraph
+        )
+        assert_graphs_equal(actual, expected)
+        expected = nx.MultiDiGraph()
+        expected.add_edges_from(set(edges), weight=1)
+        # The sole self-loop (edge 0) on vertex 1 should have weight 2.
+        expected[1][1][0]["weight"] = 2
+        actual = nx.from_numpy_array(
+            A, parallel_edges=False, create_using=nx.MultiDiGraph
+        )
+        assert_graphs_equal(actual, expected)
+
+    def test_symmetric(self):
+        """Tests that a symmetric array has edges added only once to an
+        undirected multigraph when using :func:`networkx.from_numpy_array`.
+
+        """
+        A = np.array([[0, 1], [1, 0]])
+        G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
+        expected = nx.MultiGraph()
+        expected.add_edge(0, 1, weight=1)
+        assert_graphs_equal(G, expected)
+
+    def test_dtype_int_graph(self):
+        """Test that setting dtype int actually gives an integer array.
+
+        For more information, see GitHub pull request #1363.
+
+        """
+        G = nx.complete_graph(3)
+        A = nx.to_numpy_array(G, dtype=int)
+        assert A.dtype == int
+
+    def test_dtype_int_multigraph(self):
+        """Test that setting dtype int actually gives an integer array.
+
+        For more information, see GitHub pull request #1363.
+
+        """
+        G = nx.MultiGraph(nx.complete_graph(3))
+        A = nx.to_numpy_array(G, dtype=int)
+        assert A.dtype == int