### view env/lib/python3.9/site-packages/networkx/algorithms/centrality/tests/test_harmonic_centrality.py @ 0:4f3585e2f14bdraftdefaulttip

author shellac Mon, 22 Mar 2021 18:12:50 +0000
line wrap: on
line source
```
"""
Tests for degree centrality.
"""
import networkx as nx
from networkx.algorithms.centrality import harmonic_centrality
from networkx.testing import almost_equal

class TestClosenessCentrality:
@classmethod
def setup_class(cls):
cls.P3 = nx.path_graph(3)
cls.P4 = nx.path_graph(4)
cls.K5 = nx.complete_graph(5)

cls.C4 = nx.cycle_graph(4)
cls.C5 = nx.cycle_graph(5)

cls.T = nx.balanced_tree(r=2, h=2)

cls.Gb = nx.DiGraph()
cls.Gb.add_edges_from([(0, 1), (0, 2), (0, 4), (2, 1), (2, 3), (4, 3)])

def test_p3_harmonic(self):
c = harmonic_centrality(self.P3)
d = {0: 1.5, 1: 2, 2: 1.5}
for n in sorted(self.P3):
assert almost_equal(c[n], d[n], places=3)

def test_p4_harmonic(self):
c = harmonic_centrality(self.P4)
d = {0: 1.8333333, 1: 2.5, 2: 2.5, 3: 1.8333333}
for n in sorted(self.P4):
assert almost_equal(c[n], d[n], places=3)

def test_clique_complete(self):
c = harmonic_centrality(self.K5)
d = {0: 4, 1: 4, 2: 4, 3: 4, 4: 4}
for n in sorted(self.P3):
assert almost_equal(c[n], d[n], places=3)

def test_cycle_C4(self):
c = harmonic_centrality(self.C4)
d = {0: 2.5, 1: 2.5, 2: 2.5, 3: 2.5}
for n in sorted(self.C4):
assert almost_equal(c[n], d[n], places=3)

def test_cycle_C5(self):
c = harmonic_centrality(self.C5)
d = {0: 3, 1: 3, 2: 3, 3: 3, 4: 3, 5: 4}
for n in sorted(self.C5):
assert almost_equal(c[n], d[n], places=3)

def test_bal_tree(self):
c = harmonic_centrality(self.T)
d = {0: 4.0, 1: 4.1666, 2: 4.1666, 3: 2.8333, 4: 2.8333, 5: 2.8333, 6: 2.8333}
for n in sorted(self.T):
assert almost_equal(c[n], d[n], places=3)

def test_exampleGraph(self):
c = harmonic_centrality(self.Gb)
d = {0: 0, 1: 2, 2: 1, 3: 2.5, 4: 1}
for n in sorted(self.Gb):
assert almost_equal(c[n], d[n], places=3)

def test_weighted_harmonic(self):
XG = nx.DiGraph()
[
("a", "b", 10),
("d", "c", 5),
("a", "c", 1),
("e", "f", 2),
("f", "c", 1),
("a", "f", 3),
]
)
c = harmonic_centrality(XG, distance="weight")
d = {"a": 0, "b": 0.1, "c": 2.533, "d": 0, "e": 0, "f": 0.83333}
for n in sorted(XG):
assert almost_equal(c[n], d[n], places=3)

def test_empty(self):
G = nx.DiGraph()
c = harmonic_centrality(G, distance="weight")
d = {}
assert c == d

def test_singleton(self):
G = nx.DiGraph()